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Abstract Isotope measurements were performed on dissolved NO3, NH;, and suspended particulate
total N along a salinity gradient in the Pearl River Estuary (PRE) to investigate seasonal changes in main N
sources and its biogeochemical processing under the influence of monsoon climate. Our data revealed that
municipal sewage and remineralized soil organic N were the major sources of DIN (NO; and/or NH; ) in
freshwater during winter and summer, respectively, whereas phytoplankton biomass was a major
component of PN in both seasons. In low-salinity waters (<2-3), nitrification was proved to be a significant
NO; source via NH; consumption, with N isotope effects of —15.3%, in summer and —23.7%, in winter for
NH, oxidation. The contribution of nitrification to the total NO; pool was smaller in summer than in winter,
most likely due to freshwater dilution. At midsalinities (3-20), 5'°N values of PN were similar to those of
NO; and NH; in summer, reflecting a strong coupling between assimilation and remineralization. In winter,
however, higher 6'°Nyu4 but lower §'>Nyos than 6'°Npy were observed, even though ¢'°Npy was similar
between summer and winter. Intense sediment-water interaction and resuspension of sediments during
winter appeared largely responsible for the decoupling. At high salinities, the greater enrichment in
5"80n03 than in 6"°Nyos (up to 15.6%,) in winter suggests that atmospheric deposition may contribute to
NO; delivery during the dry season. Overall, these results show the importance of seasonal variability in
physical forcing on biological N sources and its turnover processes in the highly dynamic river-dominated
estuary.

1. Introduction

As a transition zone between land and ocean, estuaries are characterized by strong gradients in environ-
mental and ecological parameters. The behavior of nitrogen (N), one of the major and often limiting nutri-
ent for primary production, in such a zone is complex, due partially to dynamic interactions between
physical, chemical, and biological processes that govern the fate of N [Wankel et al., 2007; Dahnke et al.,
2008]. In addition, the time-varying and/or multiple N sources that are closely associated with human activi-
ties in recent decades make it more difficult to understand N behavior in an estuary.

Among many methods, stable nitrogen isotope (6'>N) of various pools of N, combined with the oxygen iso-
tope of NO; (6"80n03), has been successfully used to reveal sources and biogeochemical processes of N,
especially during the last decade due to significant progress on precise measurements of N and O isotope
ratios in seawater [e.g., Wankel et al., 2007; Dahnke et al., 2008; Chen et al., 2013; Xue et al., 2014]. In general,
various N sources can be differentiated by their distinct ranges of N and O isotopic values [Kendall, 1998,
and references therein]. For example, domestic sewage and manure are more enriched in BN (6'°N:
10-209,,) than fertilizer and atmospheric deposition, and §'20 values of atmospheric NO; is generally very
high (50-809%,) relative to those from other sources (<259%,). However, the applicability of this technique to
N source determination in estuaries can be further complicated by biological processes, e.g., assimilation,
nitrification, and denitrification, in which significant isotope fractionation may occur due to preferential
uptake of lighter isotopes ('*N and '°0) [e.g., Kendall, 1998; Casciotti et al., 2003]. Thus, a better understand-
ing of N cycling in a coastal marine ecosystem could be achieved by an integrated knowledge of distribu-
tion and variation of 6'°N (and d'80) signatures of various N pools, including dissolved and particulate N.
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Matrix effects and mass bias caused by inorganic
acids on boron isotope determination by multi-
collector ICP-MS

Xuefei Chen,®® Le Zhang,®® Gangjian Wei*® and Jinlong Ma*?

The influence of inorganic acids (HCl, HNOs, and HF) on boron isotope measurement by using multi-
collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has been investigated. The acid
concentration is in the range of 0-0.2 M. Generally, acids can enhance B signal intensities and reduce
isotopic mass bias compared to that of the same B concentration in a H,O matrix. The signal
enhancement in each acid matrix differs slightly, while B isotopic mass bias is significantly different
among them, with the highest *'B/1°B ratio in the HF matrix and the lowest in the HCl matrix. In HCl and
HNO3z matrices, boron isotopic mass bias reduces when the acid concentration goes up. However, such
a scenario is not observed in the HF matrix. Furthermore, the *B/*°B ratio in the HF matrix is the same as
that in the H,O matrix within the studied acid concentration (up to 0.2 M). This implies that changes in
mass bias and the B signal cannot be related to the same process in ICP-MS. We suggest that B signal
enhancement in inorganic acids can mainly be attributed to Coulomb fission during aerosol transport
towards plasma, while boron ion redistributions in the plasma caused by matrix element (e.g. CL, N)
ionization lead to changes in isotopic mass bias. As acids can cause considerable matrix effects and mass
bias for boron, acidity match between samples and standard solutions is imperative for accurate and

www.rsc.org/jaas

Introduction

Light element boron (B) has two isotopes *'B and '°B, which make
up approximately 80.1% and 19.9% of the total boron, respec-
tively." With a relatively large mass difference, boron isotopes
experience large fractionations in nature” Furthermore, the
chemical and biological properties of boron make it a very prom-
ising element to study for its isotopic variations in many fields such
as: (1) geochemical proxy for paleo-pH of the oceans;*” (2)
geochemical tracer for studying high- and low-temperature fluid-
related processes;® (3) chemical weathering;>** (4) tracer for
anthropogenic pollution;'>** and (5) B behavior in higher plants.'***

MC-ICP-MS has become the most common approach for
boron isotope measurements in recent years,'* for it is more
rapid and convenient to be carried out, and possesses the ability
to maintain better temporal stability. Based on this instrument,
several chemical treatments have been developed for separating
boron from complicated matrices (e.g. silicates, carbonates,
and plants etc.).**> For different chemical procedures, the
final solutions involve different types of acids (e.g. HCl, HNO;,
or HF) or H,O as the introduction medium for MC-ICP-MS
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*The University of Chinese Academy of Sciences, Beijing, 100039, China
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precise B isotope measurement by MC-ICP-MS.

measurements.’*> Introduction of inorganic acids into the
isotope analyses affects the mass bias of boron in the MC-ICP-
MS.2%?2?¢ Measurements performed on B standard solutions
with trace HCl result in ~5% reduction in mass bias.?® Moreover,
B isotopic mass bias reduces with increasing acid concentration,
and this scenario is more serious for HCl than HNOj;.**?*¢
Meanwhile, *'B signal intensity in the HCl matrix tends to be
slightly higher than that in the HNO; matrix.”* Such acid effects
imply that an appropriate introduction medium and acidity
match between samples and standard solutions are of critical
importance for accurate and precise boron isotope ratio
measurements. The mechanism for this, however, is not well
known yet.

Mineral acids are the most commonly used medium for
introducing analytes into the ICP-MS. The type of acid and its
concentration affect the analyte signal, which can be attributed
to acids’ effects on aerosol generation, analyte transport, or
changes in excitation and ionization processes within the
plasma.””~** For most elements, the presence of an acid matrix
can lead to signal depression compared to the H,O matrix.””*%3*
However, using very low concentration acids could increase
signals.*' In contrast to acids' matrix effects, few studies focus
on their influences on mass bias in MC-ICP-MS.*** A study on
Fe isotope measurement showed that HNO; is superior to HCl
as it yielded smaller drifts of instrumental mass bias with time
and better signal stability in MC-ICP-MS.** In addition, as

This journal is © The Royal Society of Chemistry 2016
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Abstract many factors influence the seasonal changes in §'C levels in coral skeletons; consequently, the
climatic and environmental significance of such changes is complicated and controversial. However, it is
widely accepted that the secular declining trend of coral §'3C over the past 200 years reflects the changes in
the additional flux of anthropogenic CO, from the atmosphere into the surface oceans. Even so, the
centennial-scale variations, and their significance, of coral 'C before the Industrial Revolution remain unclear.
Based on an annually resolved coral 5'3C record from the northern South China Sea, the centennial-scale
variations of coral 8'>C over the past millennium were studied. The coral §'>C and total solar irradiance (TSI)
have a significant positive Pearson correlation and coupled variation during the Medieval Warm Period and
Little Ice Age, when natural forcing controlled the climate and environment. This covariation suggests that
TSI controls coral 8'>C by affecting the photosynthetic activity of the endosymbiotic zooxanthellae over
centennial timescales. However, there was a decoupling of the coral skeletal 'C and TSI during the Current
Warm Period, the period in which the climate and environment became linked to anthropogenic factors.
Instead, coral '3C levels have a significant Pearson correlation with both the atmospheric CO, concentration
and §'3C levels in atmospheric CO,. The correlation between coral §'3C and atmospheric CO, suggests that
the oceanic '3C Suess effect, caused by the addition of increasing amounts of anthropogenic 12C0, to the
surface ocean, has led to the decoupling of coral §'3C and TSI at the centennial scale.

1. Introduction

Scleractinian reef corals are one of the main archives of past climatic and environmental information in the
tropical oceans, such as sea surface temperature (SST), sea surface salinity (SSS), and pH [Felis and Pdtzold,
2003; Pelejero et al., 2005; Wei et al., 2009; Lough, 2010; Liu et al., 2014]. However, compared with some other
widely used geochemical proxies (such as Sr/Ca, Mg/Ca, and 3'80), the use of coral 5'C as a proxy for envir-
onmental and climatic change remains a matter for debate [Fairbanks and Dodge, 1979; Swart, 1983;
McConnaughey, 1989, 2003; Swart et al., 1996; McConnaughey et al., 1997; Grottoli, 2002]. At the cellular scale,
carbon precipitated in coral skeletons originates directly from dissolved inorganic carbon (DIC) in the extra-
cellular calcifying fluid (ECF) that forms an interior pool beneath the calicoblastic layer of coral polyps where
the calcification takes place [Gattuso et al., 1999]. Inorganic carbon derived from metabolic respiration inside
the coral polyps and external seawater may both contribute to the carbon in the ECF used for calcification,
although the relative contribution from these two sources remains unknown [Furla et al., 2000; Al-Horani
et al,, 2003; McConnaughey, 2003]. Therefore, any biological or environmental factor that is able to influence
the 5'3C levels preserved in these two sources of inorganic carbon input to the ECF would also affect §'3C
variations recorded in coral skeletons.

The climatic and environmental implications of seasonal variations in coral 8'3C levels are site specific. A
number of studies have demonstrated that a wide range of different factors, such as light availability (cloud
cover) and water depth [Land et al,, 1975; Weber et al., 1976; Fairbanks and Dodge, 1979; Swart et al., 1996;
Grottoli and Wellington, 1999; Heikoop et al., 2000; Grottoli, 2002; Maier et al., 2003; Rosenfeld et al., 2003],
kinetic isotope fractionation [McConnaughey, 1989], the §'3C of DIC in surrounding seawater [Swart et al.,
1996; Watanabe et al., 2002; Moyer and Grottoli, 2011; Deng et al.,, 2013a], feeding [Grottoli, 2002; Reynaud
et al, 2002], spawning [Gagan et al,, 1994, 1996], and bleaching [Porter et al., 1989; Leder et al., 1991; Allison
et al, 1996], plays important roles in the seasonal variations of coral skeletal 8'3C levels.
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Abstract For the global oceans, the characteristics of high-resolution climate changes during the last
millennium remain uncertain because of the limited availability of proxy data. This study reconstructs cli-
mate conditions using annually resolved coral records from the South China Sea (SCS) to provide new
insights into climate change over the last millennium. The results indicate that the climate of the Medieval
Climate Anomaly (MCA, AD 900-1300) was similar to that of the Current Warm Period (CWP, AD 1850-
present), which contradicts previous studies. The similar warmth levels for the MCA and CWP have also been
recorded in the Makassar Strait of Indonesia, which suggests that the MCA was not warmer than the CWP in
the western Pacific and that this may not have been a globally uniform change. Hydrological conditions were
drier/saltier during the MCA and similar to those of the CWP. The drier/saltier MCA and CWP in the western
Pacific may be associated with the reduced precipitation caused by variations in the Pacific Walker Circulation.
As for the Little Ice Age (LIA, AD 1550-1850), the results from this study, together with previous data from the
Makassar Strait, indicate a cold and wet period compared with the CWP and the MCA in the western Pacific.
The cold LIA period agrees with the timing of the Maunder sunspot minimum and is therefore associated with
low solar activity. The fresher/wetter LIA in the western Pacific may have been caused by the synchronized
retreat of both the East Asian Summer Monsoon and the Australian Monsoon.

1. Introduction

Global warming remains an ongoing concern for the climate change research community. To better under-
stand the present-day climate conditions and the potential trends of future climate change, it is necessary
to extend the temporal scale of investigation into the last millennium [Jones et al., 1998; McGregor et al.,
2015]. The last millennium includes three distinct climate intervals: the Medieval Climate Anomaly (MCA, AD
900-1300) [Lamb, 1965; Crowley and Lowery, 2000], the Little Ice Age (LIA, AD 1550-1850) [Robock, 1979;
Bradley and Jones, 1993], and the Current Warm Period (CWP, AD 1850-present) [Wu et al., 2012; Fleury et al.,
2015]. The MCA and LIA are climate anomalies that were caused by natural forcing (e.g., solar variability and
volcanic emissions), but the CWP is linked to anthropogenic factors (e.g., industrialization and land-use
changes) [Masson-Delmotte et al., 2013].

A comparison of the climatic and environmental changes that occurred during these three periods is essen-
tial if we are to develop a better understanding of past climate change and future global warming. Howev-
er, instrumental observations cover only the last few decades, and this is clearly insufficient to examine
changes that occurred many hundreds of years ago. Therefore, we must extend the historical records by
using proxy data [Mann, 2002]. A large number of studies based on climate proxies, derived from archives
such as coral, foraminifera, mollusks, stalagmites, sediments, tree rings, ice cores, and documentary records,
have been used to successfully reconstruct the characteristics of climate change during the three periods
defined above [Jones et al., 2009]. Even so, the full characteristics of the seasonal to annual climate during
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The past two millennia include some distinct climate intervals, such as the Medieval Warm Period (MWP)
and the Little Ice Age (LIA), which were caused by natural forcing factors, as well as the Current Warm
Period (CWP) that has been linked to anthropogenic factors. Therefore, this period has been of great inter-
est to climate change researchers. However, most studies are based on terrestrial proxy records, historical
documentary data, and simulation results, and the ocean and the tropical record are very limited. The
Eastern Han, Three Kingdoms, and Western Jin periods (25-316 CE) cover the beginning first millennium
CE in China, and were characterized by a cold climate and frequent wars and regime changes. This study
used paired Sr/Ca and §'%0 series recovered from a fossil coral to reconstruct the sea surface water con-
ditions during the late Eastern Han to Western Jin periods (167-309 CE) at Wenchang, eastern Hainan
Island in the northern South China Sea (SCS), to investigate climate change at this time. The long-term
sea surface temperature (SST) during the study interval was 25.1 °C, which is about 1.5 °C lower than that
of the CWP (26.6 °C). Compared with the average value of 0.40%c during the CWP, the long-term average
seawater 880 (—0.06%0) was more negative. These results indicate that the climate conditions during the
study period were cold and wet and comparable with those of the LIA. This colder climate may have been
associated with the weaker summer solar irradiance. The wet conditions were caused by the reduced
northward shift of the intertropical convergence zone/monsoon rainbelt associated with the retreat of
the East Asian summer monsoon. Interannual and interdecadal climate variability may also have con-
tributed to the variations in SST and seawater §'%0 recorded over the study period.

© 2016 Published by Elsevier Ltd.
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ieval Warm Period (MWP, 900-1300 CE; Lamb, 1965; Crowley and
Lowery, 2000; Bradley et al., 2003) and the Little Ice Age (LIA,
1550-1850 CE; Robock, 1979; Bradley and Jones, 1993;
Matthews and Briffa, 2005) are believed to have been caused by

1. Introduction

Global warming has become the focus of increasing concern
within the climate change research community over recent years.

To better understand present-day climate conditions and the
potential trend of future climate change, it is important to extend
the temporal scale of investigation into the last two millennia
(Taira, 1980; Fritz et al., 2000; Hu et al., 2001; Booth et al., 2006;
Mann, 2007; Anderson et al., 2010; Tierney et al., 2010; Vuille
et al,, 2012; Consortium, 2013; Wurtzel et al., 2013; Denniston
et al,, 2015; Donnelly et al., 2015; H. Yan et al., 2015b). The impor-
tance of the last two millennia is that they include some distinct
climate intervals. For example, climate anomalies such as the Med-
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natural forcing (e.g., solar variability and volcanic emissions). How-
ever, the Current Warm Period (CWP, 1850-present CE; Wu et al.,
2012; Fleury et al., 2015) is a climate anomaly that has been linked
with anthropogenic factors (e.g., industrialization and land-use
changes).

In China, the problem of climate change over the past two mil-
lennia has been of longstanding interest to the paleoclimatic com-
munity (e.g., Gong and Hameed, 1991; Shi et al., 1999; Zheng et al.,
2001; Yang et al., 2002, 2016; Ge et al., 2003, 2004, 2011; Holmes
et al., 2009; Tan et al,, 2011; Hao et al.,, 2012, 2016; Q. Ge et al.,
2013; Q.S. Ge et al,, 2013; H. Yan et al, 2015a; Q. Yan et al.,
2015a, 2015b). However, almost all of these studies were based
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Abstract Nine cruises were conducted on a seasonal basis from 2013 to 2015 to investigate the spatial
distribution and seasonal variability of 5'>C and 6'°N in particulate organic matter (POM), and its response
to flooding in the Pearl River Estuary (PRE), south China. Our study reveals highly variable isotope ratios
between seasons in this subtropical estuary, following seasonal climatic and hydrological cycles. Wet
seasons had more isotopically depleted '>C values, indicating the dominance of terrestrial and freshwater
algae POM, whereas the contribution from marine phytoplankton (16%-59%) was higher during the dry
seasons. In contrast, 5'°N exhibited a sharp increase (up to 17.6%,) at low salinities (0-5) during high flow
seasons. This was consistent with high NO5* concentrations, reflecting phytoplankton and bacteria
assimilation of 5'°N enriched-NO; as well as notable isotope fractionation during microbial mineralization.
There was little annual variability in 8'>C over the 2 year period; however, particulate nitrogen (PN)
exhibited lower concentrations but more enriched isotope values in 2015 than in 2014. This can be best
explained by temperature-modulated biological processing of particulate organic nitrogen, partially due to
different biogeochemical responses during normal (2014) and strong El Nino (2015) years. After flooding in
June 2015, terrestrial organic matter and freshwater phytoplankton were the major components of POM
within the estuary and shelf areas, whereas marine phytoplankton was the dominant component in

the adjacent coastal waters with mid-salinities (10 < S < 20), as revealed by a phytoplankton bloom

(>10 pg L") and &'*C-enriched but '°N-depleted POM.

1. Introduction

Estuaries are important zones for the production, transformation and removal of organic matter, both in dis-
solved and particulate form [e.g., Hedges et al.,, 1997; Canuel and Hardison, 2016]. Organic matter (OM) in
estuaries is derived from autochthonous (in situ production) and allochthonous (e.g., terrestrial soils and
urban sewage) sources. As compared to the dissolved organic matter (DOM), however, particulate organic
matter (POM) is more bioavailable to organisms. Rivers export an estimated 0.14 Gt (10'° g) of particulate
carbon and 0.02 Gt of particulate nitrogen (PN) to marine systems each year, of which 35% is in a labile
form that is easily degraded by microbes [Meybeck, 1982; Hedges et al., 1997; Seitzinger et al., 2002]. Despite
high OM loads, OM pools in the ocean have only minor terrestrial signatures based on measurements of car-
bon (C) isotopes and biomarkers (e.g., lignin phenols) [Hedges et al., 1997]. Therefore, it is essential to under-
stand the origin, distribution and fate of POM that sustains the high levels of biological activity in estuaries,
and which has important implications for regional and global carbon and nitrogen (N) cycles.

It is difficult to determine the origin of POM in estuaries because POM is supplied from multiple sources
that change over time, including riverine inputs (e.g., terrestrial soils, C3 and C4 land plants) and in situ pro-
duction by phytoplankton and bacteria as well as local sources from urban runoff and sewage effluent.
Moreover, POM usually exhibits nonconservative behavior due to a number of mechanisms, including
strong internal biogeochemical processes (e.g., phytoplankton production and bacterial respiration) and
complex sedimentary dynamics during estuarine mixing. Thus, elucidating the sources and turnover of
POM in estuaries is a challenging but necessary step toward effective estuarine management.
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High-resolution surface temperature records over the last two millennia are crucial to understanding the
forcing and response mechanism of Earth's climate. Here we report a bidecadal-resolution sea surface
temperature (SST) record based on long-chain alkenones in a gravity sediment core retrieved from the
northern South China Sea. SST values varied between 26.7 and 27.5 °C, with a total variability ~1 °C over
the last 2000 years. The general SST variation pattern matches well with total solar irradiance (TSI)
changes. Relatively warm period between 800 and 1400 AD and cool period 1400-1850 AD could be
identified, in agreement with the commonly defined periods of Medieval Warm Period and Little Ice Age.
Within chronological uncertainty, notable short cooling events at 640-670 AD, 1030-1080 AD, 1260-1280
AD and 1420-1450 AD, coincide with large volcanic eruption events. The general coincidence of SST
changes with TSI and volcanic eruption events suggests strong impact of external forcing on sea surface
conditions in the studied area. In addition to the direct TSI changes, volcanic eruptions might have
induced oceanic and atmospheric circulation adjustments which might be responsible for the short
cooling events as revealed in the alkenone-SST record.

© 2017 Published by Elsevier Ltd.

1. Introduction

Earth's surface temperature changes over the last two millennia
have been crucial to understanding current global warming issues,
and reconstructed at regional, continental, and global scales using
proxy data from various archives (Mann, 2007). Many of the high-
resolution data have been used to produce a global array of climate
as part of the “2k Network” in the IGBP Past Global Changes (PAGES)
project (Ljungqvist et al., 2012; Mann, 2007, 2008; Mann and Jones,
2003; Neukom and Gergis, 2012; Neukom et al., 2014; PAGES 2k
Consortium, 2013; PAGES Ocean2k Working Group, 2012), as well
as in the 4th and 5th IPCC Assessment Report. Now some concepts,
such as the Medieval Warm Period (WMP) and Little Ice Age (LIA),
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Ocean University, Zhanjiang 524088, China.
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are widely accepted as the common climatic features over the last
two millennia. However, comparisons among high-resolution
temperature records derived from different proxies show
distinctly spatial discrepancies, particularly between land and
ocean, northern and southern hemispheres (PAGES 2k Consortium,
2013). Indeed, even the most prominent epochs during the last two
millennia, the WMP and LIA, do not have specific definitions in
terms of their time span, suggesting no global synchronous tem-
perature patterns (Mann, 2007; PAGES 2k Consortium, 2013).
Studies on those discrepancies would be helpful to deciphering
climatic forcing-response processes, which however requires
adequate coverage of high-resolution temperature reconstructions
from various environment settings.

The mostly used annually-resolved proxy data are from conti-
nental archives, such as tree rings (Anchukaitis et al., 2012; Liu
et al., 2009; Wilson et al., 2016) and ice cores (Dahljensen et al.,
1998; Kobashi et al., 2011). Marine archives like corals and giant
clams could produce annual-resolution paleotemperatures, which
are often too short in most cases, and therefore usually concate-
nated to produce longer temperature records at millennial scale
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Abstract The 2-7-year periodicities recorded in fossil
coral records have been widely used to identify paleo-El
Nifo events. However, the reliability of this approach in
the South China Sea (SCS) has not been assessed in detail.
Therefore, this paper presents monthly resolution geo-
chemical records covering the period 1978-2015 obtained
from a Porites coral recovered from the SCS to test the
reliability of this method. The results suggest that the SCS
coral reliably recorded local seawater conditions and the
super El Nifio events that occurred over the past 3 decades,
but does not appear to have been sensitive enough to record
all the other El Nifios. In detail, the St/Ca series distinctly
documents only the two super El Nifios of 1997-1998 and
20142016 as obvious low values, but does not match the
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Oceanic Nifio Index well. The super El Nifio of 1982-1983
was identified by the growth hiatus caused by the coral
bleaching and subsequent death of the coral. Three distinct
stepwise variations occur in the 8'3C series that are coin-
cident with the three super El Nifios, which may be related
to a substantial decline in endosymbiotic zooxanthellae
density caused by the increase in temperature during an El
Niiio or the selective utilization of different zooxanthellaes
that was required to survive in the extreme environment.
The increase in rainfall and temperatures over the SCS
during El Nifios counteracts the effects on seawater 8'°0
(8'®04y) and salinity; consequently, coral AS3'30 series can
be used as a proxy for 3'®0,, and salinity, but are not
appropriate for identifying El Nifio activity. The findings
presented here suggest that the method to identify paleo-El
Nifio activity based on the 2—7-year periodicities preserved
in the SCS coral records might not be reliable, because the
SCS is on the edge of El Nifio anomalies due to its great
distance from the central equatorial Pacific and the imprints
of weak and medium strength El Nifio events may not be
recorded by the corals there.

Keywords El Nifio - Coral - Sr/Ca - 3'%0 - §'C - South
China Sea

Introduction

The El Nifio—Southern Oscillation (ENSO) is the largest
and strongest source of interannual climate variability, with
a major impact on temperature and precipitation in the
tropical Pacific and even on global climatic patterns, and
profound global ecological, social, and economic conse-
quences (Cane 1986). Under the background of global
warming, El Nifio events have become more severe and
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ARTICLE INFO ABSTRACT

This paper presents relatively high-resolution geochemical records spanning the past 4000 cal yr BP obtained
from the lacustrine sediments of Poyang Lake in central China. The variations in the intensity of the East Asian
summer monsoon (EASM) are traced using the K/Na, Ti/Na, Al/K, kaolinite/illite and clay/feldspar ratios, to-
gether with the chemical index of alteration (CIA), as indicators of chemical weathering. During the last
4000 years, the proxy records of chemical weathering from Poyang Lake exhibit an overall enhanced trend,
consistent with regional hydrological changes in previous independent records. Further comparisons and ana-
lyses demonstrate that regional moisture variations in central China is inversely correlated with the EASM
intensity, with weak EASM generating high precipitation in central China. Our data reveal three intervals of
dramatically dry climatic conditions (i.e., ca. 4000-3200calyr BP, ca. 2800-2400calyr BP, and ca.
500-200 cal yr BP). A period of weak chemical weathering, related to cold and dry climatic conditions, occurred
during the Little Ice Age (LIA), whereas more intense chemical weathering, reflecting warm and humid climatic
conditions, was recorded during the Medieval Warm Period (MWP). Besides, an intensification of chemical
weathering in Poyang Lake during the late Holocene agrees well with strong ENSO activity, suggesting that

Keywords:

East Asian summer monsoon
Poyang Lake

Chemical weathering

Late Holocene

ENSO

moisture variations in central China may be predominantly driven by ENSO variability.

1. Introduction

The Asian monsoon system is an integral part of the global climatic
system, and a deeper knowledge of it will contribute to a better un-
derstanding of global atmospheric circulation and climate change.
Understanding the nature of the variability within the Asian monsoon
during the Holocene is critical for our understanding of present climatic
conditions and for predicting future climate change (Yao et al., 2015).
The historical evolution of the East Asian summer monsoon (EASM) has
been widely studied using various geological archives, including loes-
s—paleosol sequences, marine and lacustrine sediments, peat deposits,
and stalagmites (Wang et al., 2005; Wei et al., 2006; Cosford et al.,
2008; Liu et al., 2013; Mu et al., 2016; Zhang et al., 2016a; Fan et al.,
2017; Goldsmith et al., 2017; Li et al., 2017; Wu et al., 2017; Zhu et al.,
2017). However, spatial patterns in the long-term variations in the
Asian summer monsoon remain debated. For example, An et al. (2000)
proposed a time-transgressive Holocene optimum in the East Asian
monsoon region, with an apparent southward-retreating trend. How-
ever, evidences from the previous reviews (Zhao et al., 2009; Zhang
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et al., 2011) and stalagmite 880 records (Dykoski et al., 2005; Dong
et al., 2010) suggested a broadly synchronous climatic history across
the monsoon region. Nevertheless, an updated perspective of the EASM
diachronity presented by Zhou et al. (2016) deemed that the onset of
the Holocene optimum took place at different times in different regions
of China, with a marked northward shift. Recently, Rao et al. (2016a,b)
reported that the spatial pattern of humidity variation in East China
exhibited the “— + —” mode during the early-Holocene and late-Ho-
locene, but the “+ — +” mode during the mid-Holocene. Interestedly,
results from modern observations demonstrated that summer pre-
cipitation exhibited spatial differences in the Asian monsoon region
(Zhu, 1934; Zhu and Wang, 2002; Zhao and Zhou, 2006; Zhou et al.,
2009; Zhao et al., 2010). Such spatial pattern is described colloquially
as “flood in the south and drought in the north”, or “drought in the
south and flood in the north”. In addition, based on the dataset of 740
surface stations for recent 54 years (1951-2004), Ding et al. (2008)
suggested that the spatial pattern of the inter-decadal variability of
summer precipitation in monsoonal China is mainly characterized by
two meridional modes: the dipole pattern and the positive-negative-
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