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Intensified water column stratification due to global warming has the potential to
decrease nutrient availability while increasing excess light for the photosynthesis
of phytoplankton in the euphotic zone, which together will increase the need
for photoprotective strategies such as non-photochemical quenching (NPQ). We
investigated whether NPQ is enhanced and how it is regulated molecularly under
phosphorus (P) deprivation in the dinoflagellate Karlodinium veneficum. We grew
K. veneficum under P-replete and P-depleted conditions, monitored their growth
rates and chlorophyll fluorescence, and conducted gene expression and comparative
proteomic analyses. The results were used to characterize NPQ modulation and
associated gene expression dynamics under P deprivation. We found that NPQ
in K. veneficum was elevated significantly under P deprivation. Accordingly, the
abundances of three light-harvesting complex stress-related proteins increased under
P-depleted condition. Besides, many proteins related to genetic information flow were
down-regulated while many proteins related to energy production and conversion were
up-regulated under P deprivation. Taken together, our results indicate that K. veneficum
cells respond to P deprivation by reconfiguring the metabolic landscape and up-
tuning NPQ to increase the capacity to dissipate excess light energy and maintain the
fluency of energy flow, which provides a new perspective about what adaptive strategy
dinoflagellates have evolved to cope with P deprivation.

Keywords: non-photochemical quenching, dinoflagellates, phosphorus deprivation, metabolic machinery
reconfiguration, energy flow

INTRODUCTION

Phytoplankton live in a constantly changing light environment affected by factors such as the strong
solar radiation and fluctuant waves in the surface ocean, and they often absorb too much light
which exceeds their photosynthetic capacity and would potentially cause photo-oxidative damage
to the chloroplast (Anderson and Barber, 1996; Niyogi, 1999; Li et al., 2009). In response, these
photosynthetic organisms have developed many photoprotective strategies to protect themselves

Frontiers in Microbiology | www.frontiersin.org 1 March 2017 | Volume 8 | Article 404

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
https://doi.org/10.3389/fmicb.2017.00404
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2017.00404
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2017.00404&domain=pdf&date_stamp=2017-03-15
http://journal.frontiersin.org/article/10.3389/fmicb.2017.00404/abstract
http://loop.frontiersin.org/people/277142/overview
http://loop.frontiersin.org/people/279354/overview
http://loop.frontiersin.org/people/39294/overview
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00404 March 13, 2017 Time: 16:44 # 2

Cui et al. NPQ Enhancement under Phosphorus Deprivation in Dinoflagellates

from the damage of excess light, and one of the most important
mechanisms is to dissipate the excessive excitation energy
as heat through non-photochemical quenching of chlorophyll
fluorescence (NPQ) (Horton and Ruban, 2005; Erickson et al.,
2015; Goss and Lepetit, 2015). It was estimated that as high as
75% of the absorbed light energy could be eliminated by this
thermal dissipation (Demmig-Adams et al., 1996; Niyogi, 1999).
In the global ocean, about 60% of photons absorbed by marine
phytoplankton are converted to heat (Lin H. et al., 2016).

Non-photochemical quenching consists of several
components which are distinguished by different relaxation
kinetics, among them the energy-dependent quenching (qE)
is the most important and rapid part, which could be induced
and relaxed within seconds to minutes and thus is especially
important in coping with the frequent and rapid fluctuations
of light intensities in the ambient environment (Horton
and Hague, 1988; Müller et al., 2001; Zaks et al., 2013). The
other NPQ components such as state-transition quenching
(qT) and photoinhibitory quenching (qI) would relax within
tens of minutes to hours (Müller et al., 2001; Erickson et al.,
2015). In microalgae, qE relies on interconversion of specific
pigments through xanthophyll cycle and the function of the
light-harvesting complex stress-related family proteins LI818,
which were known as LHCSR in green algae or LHCX in diatoms
(Peers et al., 2009; Bailleul et al., 2010; Zhu and Green, 2010).
Xanthophyll cycle in vascular plants, green and brown algae
is composed of violaxanthin, antheraxanthin and zeaxanthin
(VAZ cycle) while in dinoflagellates, diatoms and haptophytes
it consists of diadinoxanthin and diatoxanthin (Dd-Dt cycle)
(Masojídek et al., 2004; Goss and Jakob, 2010).

Excess light stress would be exacerbated especially when the
photosynthetic organisms are exposed to various environmental
stressors such as nutrient deprivation, which can lead to the
reduction of the photosynthetic efficiency causing increase of
excess excitation energy (Demmig-Adams and Adams, 1992;
Wykoff and Grossman, 1998; Li et al., 2000). Thus, theoretically
an increase of NPQ capacity is needed under these stress
conditions (Demmig-Adams and Adams, 1992; Li et al.,
2009). Previous researches have documented the transcriptional
up-regulation of LHCSR genes under sulfur starvation and iron
deficiency in the green alga Chlamydomonas reinhardtii (Zhang
et al., 2004; Naumann et al., 2007). Enhanced NPQ capacity and
elevated expression of specific LHCX genes and proteins under
iron and nitrate starvation has also been reported in the diatom
Phaeodactylum tricornutum (Taddei et al., 2016). However, NPQ
capacity and LHCX gene expression were found to decrease
under iron and copper limitation in the diatom Thalassiosira
pseudonana (Zhu et al., 2010), and the amount of a LI818
related protein was also reduced significantly under lowered iron
in another diatom Cyclotella meneghiniana (Beer et al., 2011),
indicating that nutrient deprivation does not necessarily lead to
NPQ induction in phytoplankton.

Phosphorus is an essential nutrient for the growth of
marine phytoplankton, necessary for the synthesis of many
essential P-contained biomolecules and plays an essential role
in the regulatory of phosphorylation processes (Paytan and
McLaughlin, 2007; Karl, 2014). However, the P directly available

in the ocean, mainly in the form of orthophosphate, is often
limited (Wu et al., 2000; Mills et al., 2004; Elser et al., 2007).
Researchers have proposed the redirection of absorbed light
energy through different components of NPQ during P starvation
in C. reinhardtii (Wykoff and Grossman, 1998). The increase
of LHCSR gene abundance under P deprivation and a possible
role of the P-related transcription factor PSR1 in photoprotection
has also been described in this species (Moseley et al., 2006).
The rapid quenching of chlorophyll fluorescence through qE
and qT during Pi uptake were observed in P-starved green
alga Dunaliella tertiolecta (Petrou et al., 2008). However, NPQ
responses to P deprivation in dinoflagellates, an important group
of eukaryotic phytoplankton in the marine ecosystem, which
contribute significantly to the primary production, harmful algal
blooms (HABs) and marine biotoxin production, remains to be
explored. Furthermore, enhanced water column stratification due
to recently increasing global warming suppresses the vertical
mixing of water layers and thus reduces the nutrient supply to
phytoplankton in the ocean’s upper layer (Behrenfeld et al., 2006;
Coma et al., 2009; Hoegh-Guldberg and Bruno, 2010), predicting
that the excess light stress induced by P deprivation in the future
ocean will be worsened. Therefore, a better understanding on
NPQ modulation under P deprivation in dinoflagellates will help
us better understand how the algal group will adapt to the new
environment in the future ocean.

Karlodinium veneficum is a cosmopolitan HAB-forming
dinoflagellate species responsible for mass fish kills in many
coastal areas of the world due to the production of karlotoxins
which demonstrate hemolytic, cytotoxic, and ichthyotoxic
properties (Peng et al., 2010, Place et al., 2012). In this study,
NPQ estimation under contrasting P and light conditions was
conducted in this species. We also studied expression dynamics
of LHCX proteins through RT-qPCR and proteome analyses.
Results showed that NPQ was elevated significantly not only
when K. veneficum cells were exposed to high light, but also
when they were P-deprived. A set of proteins was found
differentially expressed between P-replete (+P) and P-depleted
(–P) conditions, with three LHCX proteins and many other
pigment proteins being up-regulated under the P-depleted
condition. These results provide direct physiological evidence for
enhanced NPQ in K. veneficum cells under P deprivation and the
molecular mechanism of the response.

MATERIALS AND METHODS

Algal Culture and Experimental Setup
Karlodinium veneficum strain CCMP2778 was originally isolated
from coastal area off Longboat Key near Sarasota, Florida USA
and provided by the Provasoli-Guillard National Center for
Marine Algae and Microbiota (NCMA) in Boothbay Harbor,
Maine, USA. In our laboratory, the culture was maintained
in L1 medium (NCMA recipe) amended seawater (salinity,
28 PSU), which was filtered through 0.22-µm membranes
and autoclaved. Cultures were grown at 20◦C under a 14 h:
10 h light dark cycle with a photon flux of 100 ± 10 µmol
photons m−2 s−1. To obtain the cultures under contrasting
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P conditions, the cultures were first grown in L1 medium
until it reached the exponential growth stage, and were then
inoculated into L1 and L1-P (same as L1 except that no phosphate
was added) medium under the same light environment, both
conditions were treated in triplicate. For the cultures under
different light conditions, algal cells in the exponential growth
stage were inoculated into new L1 medium to be cultured at
20◦C under different light conditions (50, 300, and 600 µmol
photons m−2 s−1) with previous diurnal cycle, each treated in
triplicate. The cultures were acclimated to these light intensities
for six generations before the measurements were made. The
experimental cultures described above were grown in a volume
of 300 mL in 500-mL flasks. Cell counts were carried out using
a Sedgwick–Rafter counting chamber (Phycotech, St. Joseph,
MI, USA). The concentration of dissolved inorganic phosphate
(DIP) in the medium was measured using the molybdenum
blue method (Timothy et al., 1984). About 1 × 106 cells were
collected from each culture at the selected time by centrifugation
(5000 g, 10 min) and resuspended in 1 mL Trizol reagent (MRC,
Cincinnati, OH, USA) and stored at –80◦C for subsequent RNA
extraction.

NPQ Estimation by Chlorophyll
Fluorescence Measurement
Chlorophyll fluorescence of K. veneficum cells was measured
using a FIRe fluorometer system (Satlantic, Halifax, NS, Canada).
The algal cell concentration was diluted to approximately 10,
000 cells per mL during the NPQ measurements to avoid
self-shading effect. The high luminosity blue light (maximum
emission 455 nm, 60 nm bandwidth) in FIRe was used to excite
chlorophyll fluorescence. K. veneficum cells were sampled at the
8th hour of the light cycle and were then dark adapted for
30 min at 20◦C before measurement. NPQ was calculated as
(Fm-Fm’)/Fm’ and the maximum quantum efficiency of PSII
photochemistry Fv/Fm = (Fm–F0)/Fm (Maxwell and Johnson,
2000; Baker, 2008), where F0 is the minimal fluorescence
obtained in the presence of the measuring light; Fm is the
maximum fluorescence of dark-adapted algal cells measured
during a very short and strong single turnover flash (STF); and
Fm’ is the maximum fluorescence measured after the cultures
were exposed to a continual actinic light (PAR, photosynthetically
active radiation, wavelength range from 400∼700 nm) using the
actinic light source (ALS) through the manual PAR acquisition
or PAR stepping acquisition of FIRe. NPQ induction and
relaxation kinetics under contrasting light and P conditions
were observed through the manual PAR acquisition, algal cells
after dark-adaption were exposed to actinic light for 10 min
and then the actinic light was turned off for another 10 min,
Fm’ were measured at the end of each minute during this
process and NPQ was calculated accordingly. The algal cells
cultured under 100 µmol photons m−2 s−1 were sampled for
NPQ estimation under contrasting actinic light intensities. To
measure the induction and relaxation of NPQ under contrasting
P conditions, the algal cells were sampled at the 10th day
upon inoculation to +P and –P conditions. The maximal NPQ
capacity of the algal cells under +P and –P condition was also

measured using the PAR stepping acquisition, in which the
PAR intensity increased by 50 every 30 s from 0 to 700 µmol
photons m−2 s−1.

Identification and RACE (Rapid
Amplification of cDNA Ends) of Genes
Related to Photoprotection
We investigated our annotated dinoflagellate-specific spliced
leader (DinoSL)-based K. veneficum cDNA database (Lin et al.,
unpublished, as briefly reported in Cui et al., 2016) for genes
potentially related to NPQ. The sequences acquired were further
confirmed by blastp against NCBI GenBank database. To obtain
the full-length cDNA of these genes, we extracted RNA from
K. veneficum cells as previously reported (Lin et al., 2010). Specific
primers (Supplementary Table S1) were designed for both 3′-
and 5′- RACE based on the partial sequences identified from
the above-mentioned transcriptome dataset. The 21-bp highly
conserved DinoSL was used as the 5′ forward primer for the 5′-
RACE (Zhang et al., 2007; Lin et al., 2010). The amplicons were
cloned into T-vectors and sequenced through Sanger sequencing.

Expression Dynamics of NPQ-Related
Genes Measured Using RT-qPCR
Specific primers (Supplementary Table S1) were designed
for RT-qPCR to examine the differential expression of the
photoprotection genes identified in this work under different P
and light conditions. Calmodulin (calcium-modulated protein;
KM275627) was used as the reference gene because of its
relative stable expression previously reported in some other
dinoflagellates (Rosic et al., 2011; Shi et al., 2013). For standard
curves, a purified PCR product for each gene was prepared in
ten-fold dilution series (103–107 copies per µL). RT-qPCR was
performed using Bio-Rad iQ SYBR Green Supermix Kit (Bio-Rad
Laboratories, Hercules, CA, USA) with all the reactions set up in
triplicate for each gene. Relative transcript levels of these genes
were calculated in two ways to facilitate comparison: normalized
to the amount of total RNA equivalent to the amount of cDNA
used in each reaction, and to the expression levels of the reference
gene calmodulin.

Comparative Proteomic Analysis
We carried out iTRAQ (isobaric tags for relative and absolute
quantitation) analysis to identify the differentially expressed
proteins in K. veneficum collected from +P (L1) and -P
(L1-P) conditions. Cultures under contrasting P conditions were
obtained as described above and grown in a volume of 1 L
in 2-L flasks. After inoculation into different conditions, the
+P cells were sampled at the 3rd day, and the –P cells were
sampled at the 9th day, each in duplicate. About 3 × 107

algal cells were harvested from each culture and protein was
extracted as previously reported (Wang et al., 2013). Total
protein was quantified through Bradford protein assay and
100 µg from each sample was used for iTRAQ labeling. Samples
were labeled with the iTRAQ tags and SCX-fractionated with
a LC-20AB HPLC pump system (Shimadzu, Kyoto, Japan).
Liquid chromatography electrospray ionization tandem mass
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spectrometry (LC-ESI-MS/MS) analysis was then performed
based on a TripleTOF 5600 System (AB SCIEX, Concord, ON,
USA), followed by protein identification through Mascot search
engine (Matrix Science, London, UK; version 2.3.02) against the
above-mentioned DinoSL-based K. veneficum cDNA database.
To reduce the probability of false peptide identification, only
peptides at the 95% confidence interval by a Mascot probability
analysis greater than “identity” were accepted, and each confident
protein identification was represented by at least one unique
peptide.

The abundance of a protein was quantified only when it was
represented by at least two unique peptides in our proteomic data.
The quantitative protein ratios were weighted and normalized
by the median ratio in Mascot. The criteria as fold changes
>1.2 and p-values < 0.05 was adopted to depict significantly
differentially expressed proteins. Functional annotations of the
proteins were conducted using Blast2GO program against NCBI
non-redundant (nr) protein database and Uniprot database1.
The KEGG database2 and the Clusters of Orthologous Groups
(COG) database3 were used to classify and group these identified
proteins.

Statistical Analysis
Analysis of variance (ANOVA) was carried out using PASW
Statistics 18 software package to evaluate the statistical
significance of the differences between contrasting light
and P conditions. Data shown in the figures are means with
standard deviation calculated from different replicates.

RESULTS

NPQ Induction under High Light Stress
Karlodinium veneficum cells after dark-adaption were exposed to
different light intensities of actinic light using FIRe to observe
the induction and relaxation of NPQ (Figure 1A). Under actinic
light of 50 µmol photons m−2 s−1, the NPQ was induced briefly
at the first three minutes and then the NPQ returned to zero,
indicating that under this light intensity the algal cells did not
need NPQ to dissipate the excess light. The increase of NPQ
in the beginning was due to the sudden shift of dark-adapted
cells to the light. When the dark-adapted algal cells were exposed
to actinic light of 200, 300, and 600 µmol photons m−2 s−1,
NPQ was induced quickly and significantly. After light was
turned off at the 10th minute, NPQ relaxed quickly but not
completely in several minutes. During the first two to three
minutes of the light phase, an abrupt increase in NPQ was
observed from the dark to light transition. Subsequently the NPQ
showed slightly different fluctuations under the three different
light conditions. Under 200 and 300 µmol photons m−2 s−1,
the NPQ value decreased to a minimum and then increased
to a relatively steady state before a sharp decline occurred
at the 10th minute. Under 600 µmol photons m−2 s−1, the

1http://www.uniprot.org/
2http://www.genome.jp/kegg/
3http://www.ncbi.nlm.nih.gov/COG/

FIGURE 1 | Dynamics of NPQ (non-photochemical quenching) under
contrasting light and P (phosphorus) conditions in Karlodinium
veneficum. The dark-adapted algal cells were exposed to actinic light for
10 min to induce the NPQ and then the actinic light was turned off for another
10 min. Fm’ was measured at the end of each minute. (A) Induction and
relaxation of NPQ of K. veneficum cells exposed to different actinic light
intensities. Open triangles, actinic light of 50 µmol photons m–2 s–1; open
squares, actinic light of 200 µmol photons m–2 s–1; closed squares, actinic
light of 300 µmol photons m–2 s–1; closed triangles, actinic light of 600 µmol
photons m–2 s–1. (B) Induction and relaxation of NPQ of K. veneficum cells
grown under +P and –P conditions and an actinic light intensity of 700 µmol
photons m–2 s–1. Closed circles, P-replete condition; open circles,
P-depleted condition. Data shown are means ± SD (error bars) from the
triplicated measurements.

NPQ decreased gradually until it reached a relatively steady
value.

Increase of NPQ Capacity under
P-Depleted Condition
The NPQ induction and relaxation of K. veneficum cells under
+P and –P conditions were studied through a continual exposure
to 700 µmol photons m−2 s−1 for 10 min followed by dark
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FIGURE 2 | Growth curves (A), dissolved inorganic phosphate (DIP) concentration change (B), Fv/Fm (C), and NPQ capacity (D) of K. veneficum cells
grown under +P and –P conditions. Closed circles, P-replete condition; open circles, P-depleted condition. Data shown are means ± SD (error bars) from the
triplicated cultures. Asterisks represent that significant differences were detected (p < 0.05) between +P and –P conditions.

treatment for 10 min (Figure 1B). The results showed that NPQ
under P-depleted condition was induced more quickly and the
values were generally higher compared to that under P-replete
condition. Upon switch to dark, NPQ relaxed quickly while it still
maintained at a higher level for the P-depleted cells compared to
the P-replete cells.

We also conducted a 10-day experiment to further estimate
the NPQ capacity and the Fv/Fm under the two P conditions.
Algal growth rate under +P condition was higher than that
under the –P condition (Figure 2A). The DIP depletion and
the cessation of the population growth under the –P condition
indicated that the cultures were experiencing P deprivation from
the fourth day of the experiment (Figures 2A,B). Fluorescence
measurement showed that the Fv/Fm decreased over time under
the -P condition while that in the +P cultures kept at relatively
stable and higher levels (Figure 2C), indicating that P deprivation
led to a lower photochemical efficiency. In accordance, the NPQ
capacity of the P-depleted cells was significantly higher than that
of P-replete cells (Figure 2D).

Transcriptional Dynamics of
Photoprotection Genes under Different P
Conditions
Genes encoding five LHCX proteins (Genebank No. KX524133
to KX524137) and a homolog of Phototropin-2 (PHOT2,
KX524138), which is involved in chloroplast avoidance
movement in plants (Kasahara et al., 2002), were identified
in the cDNA library of K. veneficum (Table 1). With specific
primers designed from the partial sequences obtained, our RACE
yielded cDNAs containing the complete open reading frame
(ORF), with existence of DinoSL at the 5′ UTR of these gene
transcripts confirming their dinoflagellate origin. RT-qPCR was
conducted to study their transcript abundances. The results
showed that the transcriptional regulation of the lhcx and
the phot2 genes was quite limited in response to different P
conditions (Figure 3). Transcript abundances of lhcx1, 3, 4 and
phot2 did not show significant differences between +P and –P
conditions. However, lhcx2 showed a significant up-regulation
under –P condition (Figure 3B). Moreover, lhcx5 was remarkably
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TABLE 1 | Identification of proteins related to NPQ (non-photochemical quenching) in Karlodinium veneficum based on RACE and iTRAQ analysis.

Sequence ID DinoSL ORF length (bp) Deduced
protein length

(aa)

Annotation source Description E-value Identity (%)

Karve LHCX 1
√

783 261 NCBI Blastp fucoxanthin chlorophyll a/c
LI818 clade [Chrysochromulina
sp. CCMP291]

5.00E-25 42

Karve LHCX 2
√

831 277 NCBI Blastp plastid light harvesting protein
LI818 [Dinophysis acuminata]

3.00E-30 40

Karve LHCX 3
√

753 251 NCBI Blastp fucoxanthin chlorophyll a/c
protein, LI818 clade
[Thalassiosira pseudonana
CCMP1335]

6.00E-29 40

Karve LHCX 4
√

747 249 NCBI Blastp plastid light harvesting protein
LI818 [Dinophysis acuminata]

2.00E-52 54

Karve LHCX 5
√

786 262 NCBI Blastp fucoxanthin chlorophyll a/c
protein, LI818 clade
[Thalassiosira pseudonana
CCMP1335]

1.00E-26 37

Karve PHOT2
√

825 275 Uniprot_ Swissprot Phototropin-2
[Arabidopsis thaliana]

1.00E-11 60

Karve VDE1
√

1326 442 NCBI Blastx violaxanthin de-epoxidase
[Chrysochromulina sp.
CCMP291]

7.00E-136 63

Karve VDE2
√

1203 401 NCBI Blastx violaxanthin de-epoxidase
[Chrysochromulina sp.
CCMP291]

9.00E-165 73

Karve ZEP
√

1740 580 NCBI Blastx zeaxanthin epoxidase
[Chrysochromulina sp.
CCMP291]

0.00 61

down-regulated under the P-depleted condition compared to
P-replete condition (Figure 3E).

Transcriptional Dynamics of
Photoprotection Genes under Different
Light Conditions
Transcript abundances of LHCX proteins and PHOT2 in
K. veneficum cells cultured under different light conditions were
also studied through RT-qPCR. The growth rate of cultures
under 50, 300, and 600 µmol photons m−2 s−1 was 0.239,
0.2, and 0.17, respectively, indicating that under the three
light intensities employed in this study, the higher the light
intensity used, the lower growth rate the cultures achieved
(Figure 4A). The transcript abundance of lhcx1 was very high,
even higher than calmodulin, the reference gene used in this
study; however, the transcript level was similar under the three
light conditions (Figure 4B). Similarly, lhcx3, 4 and 5 did not
show a significant differential expression under the three light
conditions (Figures 4C,D). In contrast, lhcx2 exhibited changes
in transcript abundance, higher under 600 µmol photons m−2

s−1 than under 50 and 300 µmol photons m−2 s−1 with
the latter two conditions producing no significant difference.
Phot2 also showed a transcriptional regulation in response to
different light conditions but the pattern was different from
lhcx2. The transcript abundance of phot2 was higher at the
light intensities of 300 and 600 µmol photons m−2 s−1 than
at 50 µmol photons m−2 s−1, albeit at a small magnitude,

but the former two light conditions did not elicit significant
difference.

Comparative Proteomic Analysis under
+P and –P Conditions and Identification
of Proteins Related to Photoprotection in
K. veneficum
The iTRAQ proteomic analysis identified 4, 922 proteins for
K. veneficum grown under+P and –P conditions (Supplementary
Figure S1); 82 of them were found to be up-regulated under the –
P condition (Supplementary Table S2), with 43 being classified
into different COG functional categories, mainly carbohydrate
metabolism, energy production and amino acid metabolism
(Figure 5). Among these up-regulated gene categories there were
two inorganic pyrophosphatases, which catalyze the hydrolysis
of pyrophosphate into phosphate. Also identified were a
glycerol-3-phosphate dehydrogenase and a putative sterol carrier
protein, which might be involved in lipid metabolism. Three
proteins were related to inorganic ion transport and sulfur
metabolism. One photosystem II protein and two mitochondrial
tricarboxylate transporters were also identified among the up-
regulated proteins.

Totally 136 proteins were down-regulated under the –
P condition and 41 of them were classified into 11 COG
functional categories (Figure 5 and Supplementary Table S3).
Most of these proteins are related to nucleic acid and protein
synthesis (e.g., involved in nucleotide transport and metabolism,
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FIGURE 3 | Transcript abundances of lhcx1 (A), lhcx2 (B), lhcx3 (C), lhcx4 (D), lhcx5 (E), and phot2 (F) genes normalized to calmodulin in K. veneficum
cells grown under +P and –P conditions (the same batch cultures as Figure 2). Closed circles, P-replete condition; open circles, P-depleted condition. Shown
are means ± SD (error bars) from the triplicated cultures. Asterisks represent that significant differences were detected (p < 0.05) between +P and –P conditions.

DNA replication, transcription, translation, and posttranslational
modification, Figure 5). Three proteins in signal transduction
pathways, including two Ca2+-binding proteins, were identified.
A predicted histidines or aspartates domain phosphohydrolase
was also down-regulated under the –P condition (Supplementary
Table S3). From the 93 down-regulated proteins that were not
grouped into COG functional categories, a thylakoid luminal
protein, a polymerase, a peptidase, a deoxyribonuclease II, a cold
shock protein, two RNA-binding proteins, two cathepsins and
four enzymes related to amino acid metabolism were identified
(Supplementary Table S3). Most of the other proteins were

annotated as putative uncharacterized proteins and predicted
proteins. Fifty-four other down-regulated proteins under P stress
had no matches in the database, potentially novel proteins
responding to P stress.

Seventy-two light harvesting protein complexes (LHCs) were
identified and five of them were annotated as stress-related
chlorophyll a–b binding proteins LI818 (Savard et al., 1996;
Richard et al., 2000; Peers et al., 2009), denoted as LHCX proteins
in this study (Table 1). Totally 27 of the LHCs were up-regulated
under the –P condition (Supplementary Table S2), these included
three LHCX proteins, LHCX1, LHCX2, and LHCX4 (Figure 6).
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FIGURE 4 | Growth curves (A), transcript abundances of lhcx1 compared to calmodulin (B), transcript abundances of lhcx2, 3, 4, 5, and phot2
normalized to 5 ng RNA (C) and normalized to calmodulin (D) of K. veneficum cells grown under different light intensities. The samples for gene
expression analysis were collected on the 6th day. Shown are means ± SD (error bars) from the triplicated cultures. Asterisks represent that the condition is
significantly different from the other two conditions.

LHCX5 was excluded from the comparative proteomic analysis
because its abundance was too low. PHOT2 was identified in
the K. veneficum proteome and its abundance was also found
to be higher under the –P condition (Figure 6). Besides, two
VDE proteins (KX524139 and KX524140) and one ZEP protein
(KX524141) were also identified in the proteome and cDNA
library of K. veneficum (Table 1).

DISCUSSION

NPQ in K. veneficum
Phytoplankton live in surface water and often face excess light,
and thus have developed many strategies to protect them from
photo-oxidative damage caused by excess light energy (Niyogi,
1999; Erickson et al., 2015). While recent study about NPQ in
dinoflagellates mainly focus on the symbiotic species of corals,

NPQ mechanism in HAB-forming dinoflagellate species, which
play an ecologically important role in the marine ecosystem,
has rarely been explored (Goss and Lepetit, 2015). From the
induction kinetics of NPQ observed in the present study, it is
evident that transfer from darkness to light, even low light, can
lead to a brief induction of NPQ in K. veneficum cells. Within
the range used in this study (50–600 µmol photons m−2 s−1),
NPQ increased with the intensity of ambient light. Reduced
growth rate of the K. veneficum cultures was found under high
light condition in this study (Figure 4A), indicating that excess
light caused photoinhibition to this species. The induction of
NPQ under high light and its relaxation in the dark shows
that NPQ is an important mechanism for K. veneficum to cope
with absorbed excess light energy. Our results showed that the
induction and relaxation of the NPQ in K. veneficum was very
rapid, indicating that qE, which enables the organism to cope
with the frequently and rapidly changing light field in the coastal
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FIGURE 5 | Distribution of up-regulated (empty bar) and down-regulated (solid bar) proteins under –P condition compared to +P condition based on
iTRAQ comparative proteomic analysis in K. veneficum. The proteins for which we could not identify a COG functional category were excluded in this analysis.

FIGURE 6 | Relative abundances of LHCX and PHOT2 proteins in
K. veneficum grown under –P (empty bar) versus +P (solid bar)
conditions based on the iTRAQ comparative proteomic analysis. The
expression levels of each protein under +P condition were set as one.

marine ecosystem, is a major constituent of NPQ in this species,
as is the case for most plants and algae (Müller et al., 2001;
Erickson et al., 2015; Goss and Lepetit, 2015) Moreover, from our
K. veneficum proteomic dataset, we detected the LHCX proteins,
which have been confirmed to play a vital part in the qE of
many microalgal groups (Peers et al., 2009; Bailleul et al., 2010;

Goss and Lepetit, 2015). NPQ did not relax completely in ten
minutes under dark environment, especially in the P-deprived
condition, suggesting that other components of NPQ such as qT
and qI, which needs longer time to relax, were also induced, as has
been described in other algae (Wykoff and Grossman, 1998; Zhu
and Green, 2010). It has also been proposed that diatoxanthin
could also contribute to the sustained part of NPQ (Lavaud and
Lepetit, 2013).

Earlier pigment composition analysis revealed presence of
violaxanthin but absence of antheraxanthin and zeaxanthin
in K. veneficum CCMP2778, while the diadinoxanthin and
diatoxanthin were very abundant in this strain (Bachvaroff et al.,
2009), suggesting that Dd-Dt cycle is the main xanthophyll
cycle in this species. This corresponds to previous findings
that xanthophyll cycle in other groups of dinoflagellates is also
made of the Dd-Dt cycle (Demers, 1991; Ambarsari et al.,
1997). Violaxanthin in this species could be the precursors
of diadinoxanthin, diatoxanthin and fucoxanthin, as previously
reported in other algae containing Dd-Dt cycle (Lohr and
Wilhelm, 1999; Goss and Jakob, 2010). The VAZ cycle is catalyzed
by violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase
(ZEP) while the Dd–Dt cycle depends on diadinoxanthin de-
epoxidase (DDE) and diatoxanthin epoxidase (DEP) (Goss and
Jakob, 2010; Goss and Lepetit, 2015). DDE and DEP were
detected from our K. veneficum proteome but were annotated
as VDE and ZEP (Table 1), as in the case of the diatoms
P. tricornutum and T. pseudonana (Goss and Lepetit, 2015),
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FIGURE 7 | Schematic representation of the NPQ enhancement and the metabolic machinery reconfiguration in K. veneficum under P deprivation
inferred from the iTRAQ comparative proteomic analysis. Glycolysis (red arrows), tricarboxylic acid (TCA) cycle (orange arrows), lipid metabolism (purple
arrows), pyrophosphate hydrolysis (gray arrows), NPQ and chloroplast avoidance movement were strengthened while photochemistry, genetic information flow (e.g.,
DNA replication, transcription, translation, and post-translation, blue arrows) and phosphonate metabolism (light blue arrows) were weakened under P deprivation in
K. veneficum. Representative up-regulated or down-regulated proteins under P deprivation are indicated in white font with a green or blue background, respectively.
LHCs, light harvesting protein complexes; LHCX, light-harvesting complex stress-related family proteins; PHOT2, Phototropin-2; ALDO, fructose-bisphosphate
aldolase; TPI, triosephosphate isomerase; GAPDH, glyceraldehyde phosphate dehydrogenase; PGK, phosphoglycerate kinase, ENO: enolase; GPDH,
Glycerol-3-phosphate dehydrogenase; snRNP, small nuclear ribonucleoprotein.
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because VDE versus DDE and ZEP versus DEP have high
sequence identities (Coesel et al., 2008). VDE and DDE would
differ in optimal activation pH, and ZEP and DEP differ in
the regulation of enzyme activity (Jakob et al., 2001; Goss and
Jakob, 2010). The exact structural and functional nature of the
xanthophyll cycle in the dinoflagellates requires further studies.

Transcriptional and Translational
Regulation of Photoprotection Proteins
From the RT-qPCR results, four of the five identified lhcx genes
did not show transcriptional regulation under different light
intensities, although the growth rate and the induced NPQ of
the algal cells under the three light conditions were very different
(Figure 4). Lhcx2 and phot2 were differentially expressed at the
transcriptional level according to ANOVA; however, the fold
change is rather limited. The limited transcriptional regulation
of the photoprotection genes in K. veneficum cells was also found
when they were cultured under different P conditions (Figure 3).
Three lhcx genes (lhcx1, 3, and 4) as well as phot2 did not
show transcriptional regulation between P-replete and P-depleted
conditions. Interestingly, although both were lhcx genes, lhcx2
was up-regulated while lhcx5 was down-regulated under the
P-depleted condition compared to the P-replete condition,
indicating that different LHCX genes might respond differently
to different environmental stresses. Similar results have also been
observed in diatoms under different light and nutrient stresses,
reflecting functional diversification of the LHCX gene family in
the microalgal groups which enable them to adapt to different
ecological niches in the ocean (Bailleul et al., 2010; Zhu et al.,
2010; Taddei et al., 2016).

On the other hand, the iTRAQ analysis showed that the
expression of LHCX1, 2, 4 and PHOT2 proteins were up-
regulated under the P-depleted condition, indicating that the
regulation of most of the LHCX proteins (except LHCX2) and
PHOT2 rest at different levels. It seems that the regulation of
the LHCX proteins and PHOT2 in K. veneficum lies mainly
in the translational level. The nonsynchronous regulation of
these proteins at the transcriptional and translational levels
might be because the transcriptional regulation of genes in
K. veneficum was quite limited, as has been observed in many
other dinoflagellates (Lin, 2011).

NPQ Enhancement as an Adaptive
Mechanism to Cope with P Deprivation
in K. veneficum
Phytoplankton have evolved many strategies to cope with P
deprivation, including reducing the cellular demand of P and
enhancing the ability to utilize other P sources such as dissolved
organic phosphorus (Dyhrman et al., 2007; Van Mooy et al.,
2009; Lin S. et al., 2016). Our results showed that although
K. veneficum experienced growth inhibition under P deprivation,
it could still maintain a stable population for an extended period
of time (Figure 2). Accordingly, the comparative proteomic
analysis reveals significant reconfiguration of the metabolic
machinery in K. veneficum under P deprivation (Figure 7). Many
proteins involved in the genetic information flow (e.g., DNA

replication, transcription, translation and post-translation) were
down-regulated to reduce the demand of P as protein synthesis
is one of the major P sinks (Lin S. et al., 2016). Similarly,
phosphonate metabolism was slowed down under P-depleted
condition (Cui et al., 2016). However, K. veneficum cells
maintained and even strengthened the functions related to energy
production and processes demanding less P such as glycolysis
pathway, tricarboxylic acid (TCA) cycle and lipid metabolism.
Meanwhile, pyrophosphatases were up-regulated, which could
hydrolyze pyrophosphate to release phosphate. Furthermore, the
abundances of over a third of the LHCs were up-regulated under
P-depleted condition. The metabolic machinery reconfiguration
is consistent with the proposal that phytoplankton could increase
the proportion of resource acquisition machinery such as P-poor
proteins and pigments and decrease the production of growth
machinery such as ribosomal RNA when resources are scarce
(Klausmeier et al., 2004; Arrigo, 2005). Similar proteomic
landscape changes such as the elevation of the ability to scavenge
or economize P, increase of the LHC abundances, adjustment of
the glycolysis pathway and down-regulation of protein synthesis
under P deprivation have also been documented in the diatom
T. pseudonana and the pelagophyte Aureococcus anophagefferens
(Wurch et al., 2011; Dyhrman et al., 2012).

It is interesting to observe elevation in NPQ and up-
regulation of NPQ-related and other photoprotective proteins
in K. veneficum in response to P deprivation. The identification
and the up-regulation of PHOT2 under P-depleted condition
suggest that K. veneficum can potentially perform chloroplast
avoidance movement to reduce the absorption of photons by
the chloroplast. The higher NPQ measured in the P-depleted
condition indicates that the algal cells could enhance their NPQ
activity under P stress to dissipate the excess light stress and
protect them from the potential photo-oxidative damage. This is
the first documentation of this phenomenon in dinoflagellates,
to the best of our knowledge. Our proteomic and transcriptional
analyses discussed above, including the up-regulation of LHCX1,
2, and 4, have provided molecular evidence for the enhanced
NPQ under P deprivation in K. veneficum.

The increase in the abundances of many light-harvesting
proteins and the enhanced function of metabolic machineries
related to energy production and conversion such as glycolysis,
TCA cycle and pyrophosphate hydrolysis in the P-deprived cells
indicate that the acquisition of light energy and the downstream
energy flow were enhanced in the P-deprived cells (Figure 7). We
suggest that the energy flow was accelerated in the P-deprived
cells to increase the recycling rate of P-containing compounds
such as ATP and NADPH to compensate for the very low external
supply of P. Besides, ATPs generated from these metabolic
processes are supposed to supply the energy needed for Pi
acquisition, as the uptake of low concentration Pi and the
utilization of DOPs from ambient environment by the P-deprived
cells require energy (Petrou et al., 2008; Lin S. et al., 2016).

Despite the increased absorption of light energy, the algal
cultures in our study exhibited a compromised photosynthetic
efficiency when P was deprived, which is similar to the case of
another dinoflagellate Amphidinium carterae (Li et al., 2016).
The decreased photochemical efficiency would aggravate excess
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light stress (Wykoff and Grossman, 1998). Under this condition,
elevated thermal dissipation through NPQ could protect the
photosynthetic apparatus from photodamage and maintain the
fluency of the energy flow. As photosynthesis is the basis of
energy acquisition in algae, protection of the photosynthetic
apparatus provided by the enhanced NPQ would be critical to the
vulnerable algal cells suffering from P deprivation in a complex
and changing light environment. Thus, NPQ plays an important
role in the modulation of light energy and keeps the balance of
the energy budget in the P-deprived algal cells. There could also
be some interactions between light intensities and P-deprivation
related to the regulation of NPQ capacity, which needs further
work to be explored in the future.

Taken together, the results from this study suggest that NPQ
functions are not only a protection from high light condition,
but can also be an important adaptive mechanism for algal cells
to cope with P deprivation. It gives flexibility to the P-deprived
algal cells which need to acquire more energy with a lower
photochemical efficiency to fuel the P acquisition processes and
compensate for the P deprivation. This mechanism together with
other photoprotective strategies could maintain the operation of
photosynthesis and downstream functions related to energy flow
and conversion and thus serve as an essential survival strategy for
the dinoflagellate under P deprivation.

CONCLUDING REMARKS

In this study, using an integrative approach, we discovered
that the dinoflagellate K. veneficum could reconfigure their
cellular metabolic machinery and regulate expression dynamics
of specific proteins related to NPQ to cope with excess light
stress and balance the energy budget under P deprivation. In
particular, this species up-regulates many proteins related to
light modulation such as LHCX proteins and PHOT2 under
the P-depleted condition. Accordingly, NPQ function was also
elevated significantly when K. veneficum cells were P stressed,
suggesting that this could be an important adaptive strategy
for this species to cope with P deprivation. The multi-faceted
machinery of photoprotection may confer K. veneficum a
competitive advantage in facing global warming that will
exacerbate excess light energy and nutrient deprivation. Further
work is needed to address how the photoprotective machinery

evolved, and whether the deprivation of other nutrients such
as N and Fe will also promote NPQ capacity in this and other
dinoflagellates.
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