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Rapid assessment of algal blooms in bays and estuaries has been difficult due to lack of timely shipboard mea-
surements and lack of spatial resolution from current ocean color satellites. Airborne measurements may fill
the gap, yet they are often hindered by the high cost and difficulty in deployment. Here we demonstrate the ca-
pacity of a low-cost, low-altitude unmanned aerial vehicle (UAV) in assessing an intense phytoplankton
(Phaeocystis globosa) bloom (chlorophyll concentrations ranged from 7.3 to 45.6 mg/m3) in Weitou Bay in the
western Taiwan Strait. The UAV was equipped with a hyperspectral sensor to measure the water color with a
footprint of 5 m at every 30 m distance along the flight track. A novel approach was developed to obtain remote
sensing reflectance (Rrs) from the UAV at-sensor radiometric measurements. Comparedwith concurrent and co-
located field measured Rrs (14 stations in total), the UAV-derived Rrs showed reasonable agreement with root
mean square difference ranging 0.0028–0.0043 sr−1 (relative difference ~20–32%) of such turbid waters for
the six MODIS bands (412–667 nm). The magnitude of the bloom was further evaluated from the UAV-derived
Rrs. For the bloom waters, the estimated surface chlorophyll a concentration (Chl) ranged 6–98 mg/m3, which
is 3–50 times of the Chl under normal conditions. This effort demonstrates for the first time a successful retrieval
of both water color (i.e., Rrs) and Chl in a nearshore environment from UAV hyperspectral measurements, which
advocates the use of UAVs for rapid assessment ofwater quality, especially for nearshore or difficult-to-reachwa-
ters, due to its flexibility, low cost, high spatial resolution, and sound accuracy.

© 2017 Published by Elsevier Inc.
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1. Introduction

Phytoplankton blooms are natural phenomenon. Those blooms of
particular note over decades, which adversely affect the health of ecosys-
tems and human beings aswell as the “health” of local and regional econ-
omies, are named harmful algal blooms (HABs) (Hallegraeff, 1993).
Various techniques have been developed to help monitoring and early
warning of HABs (Babin et al., 2005). Besides in situ observations, optical
sensors onboard satellites were used to observe HABs and estimate con-
centrations of phytoplankton over broad regions – or generally termed as
remote sensing approach. This technique is based on that there is a dra-
matic change of water color during these events due to significantly ele-
vated phytoplankton concentrations, and a wide range of schemes have
been developed for the utilization of satellite measurements (e.g., Ahn
ngPing.Lee@umb.edu (Z. Lee).
and Shanmugam, 2006; Carder and Steward, 1985; Hu et al., 2005;
Kurekin et al., 2014; Qi et al., 2016; Shang et al., 2014a; Sourisseau et al.,
2016; Stumpf et al., 2003;Wynne et al., 2005). For instance, a chlorophyll
anomaly technique that uses the increase in chlorophyll concentration of
1mg/m3 from themean of the previous 60 days (Stumpf et al., 2003)was
found very effective (N80%) for the detection of Karenia brevis blooms
along the southwest Florida coast (Tomlinson et al., 2004). Based on
field measurements of remote sensing reflectance and cell counts, the
feasibility of usingmultispectral and hyperspectral approaches for detect-
ing blooms of Phaeocystis globosawas assessed (Lubac et al., 2008). Using
either total absorption or water-leaving reflectance field data, an algo-
rithm was proposed to retrieve cell counts of Phaeocystis blooms in the
southern North Sea waters (Astoreca et al., 2009). A novel floating algae
index was developed, that employs the medium resolution (250 and
500 m) MODIS reflectance data at 645, 859, and 1240 nm, to identify lo-
cations of cyanobacteria blooms occurring in Taihu Lake, China (Hu et al.,
2010). An HAB risk classification method, which employs a fully
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automatic data-driven approach to identify key characteristics of water
leaving radiances and derived absorption and backscattering quantities,
has obtained accurate results on MODIS and MERIS data, successfully
identifying 89% of Phaeocystis globosa HABs in the southern North Sea
and 88% of Karenia mikimotoi blooms in the Western English Channel
(Kurekin et al., 2014). The hyperspectral imagery data collected onboard
the International Space Station were found useful for evaluating the spa-
tial variation of a ciliate bloom inwestern Long Island Sound (Dierssen et
al., 2015). A fuzzy-method to distinguish two species of toxic dinoflagel-
lates was developed based on satellite remote sensing reflectance and
corresponding in situ record of species and cell counts, providing valuable
information on the frequency and distribution of these HABs along the
French continental shelf from 1998 to 2012 (Sourisseau et al., 2016).

Many HAB events occurring in coastal regions or inshore bays, how-
ever, are often patchy or with a small spatial coverage, and such events
are many times unpredictable and fast changing. For ocean color satel-
lites having a spatial resolution of 300 m or coarser and with a revisit
time ~once per day (e.g., MERIS, MODIS) or even lesser (e.g., interna-
tional space station), it is thus difficult to have reliable measurements
of small-scale HAB blooms with such satellite sensors, especially due
to the blocking effects of clouds. There are satellites having a much
higher spatial resolution, such as Landsat (30 m) and Sentinel (10 m)
designed basically for land observations, however, they have a revisit
time of 5–16 days, thus they are far from satisfactory to meet an urgent
need for monitoring a bloom event as well as continuous monitoring
over days or even weeks. In addition, these sensors have wide spectral
bandswhich are not feasible for an accurate assessment of bloom inten-
sity. It is necessary to develop, and practice, new observational strate-
gies to monitor such HAB events.

Unmanned aerial vehicles (UAVs), although originated mostly in
military applications, have recently shown great value for environmen-
tal remote sensing, due to their flexibility and low cost, and very impor-
tantly, very high spatial resolution from the low flying height, to map
details even under heavy clouds. The global UAV market revenue is
worth 5.4 B€ as of 2013, and is expected to grow up to 6.4 B€ by 2018
(Colomina and Molina, 2014). So far, UAVs have been used mostly
over land, carrying out centimeter-level qualitative monitoring with
cameras, for example, to detect forest fire, vegetation, disaster damage
on landscapes, and inshore aquaculture cages (e.g., Berni et al., 2009;
Laliberte and Rango, 2009, 2011; Lomax and Michelini, 2015;
Martínez-de Dios et al., 2006; Rango et al., 2009; Turner et al., 2015;
Yan et al., 2016). Recently photos taken from a UAV were used to help
establish a 3-D observation of a nontoxic Noctiluca scintillans bloom
event in the nearshore waters of the South China Sea (Xie et al.,
2015). However, no reports have been found yet to quantitatively char-
acterize phytoplankton bloom or HAB events based on radiometric
measurements obtained from a UAV platform.

Here for the first time, we demonstrate a successful UAV assessment
of a phytoplankton (Phaeocystis globosa) bloom in an estuary (Weitou
Bay) in the western Taiwan Strait, where hyperspectral radiometers
were mounted to measure the upward radiance and downward irradi-
ance. The objective is two-fold: 1) to demonstrate the capacity of UAV in
bloom assessment; 2) to develop a practical approach to quantitatively
assess blooms from UAV radiometric measurements.

2. Background and in situmeasurements

2.1. The phytoplankton bloom event

An intense phytoplankton bloom, dominated by Phaeocystis globosa,
occurred inWeitou Bay during September 10 to 19, 2015 (Bulletin ofMa-
rine Environment of Fujian, 2015, the Fujian Marine Forecast). Weitou
Bay is one of N10 bays and estuaries located in thewestern Taiwan Strait,
where fourmedium- to small-size rivers discharge (see the red star sym-
bol in Fig. 1a for the location of Weitou Bay). All these bays and estuaries
are of high productivity, full of fishing and aquaculture activities.
According to the Bulletin ofMarine Environment of Fujian, 2015, cell
counts of Phaeocystis globosa were up to 200 gel matrix/L at the peak
time of the bloom, and a rough estimate of the bloom area was
~150 km2, covering the water from the outlet of Anhai Bay to Dabaiyu
and then to Weitou Village (roughly the area circled by the grey line
and the shoreline of the eastern Weitou Bay, see Fig. 1b). Note that
one gel matrix is constituted by thousands of cells, and normally cell
abundance N106 L−1 indicates presence of gel matrix or gelatinous col-
ony forms (Schoemann et al., 2005).

A ship survey with UAV overflights was carried out in September 11–
12, 2015 (Fig. 1b). The UAV flewmostly over the northeastern part of the
bay only on September 12, 2015. The two-day ship survey comprised 18
stations with remote sensing reflectance (Rrs, sr−1) measured in situ
using a GER1500 spectroradiometer (Spectra Vista Corporation, USA),
which covers a spectral range of 350–1050 nmwith a spectral resolution
of 3 nm. Rrs is defined as the ratio of water-leaving radiance (Lw) to
downwelling irradiance just above the surface (Ed(0+)) (Mobley, 1994),
and the Rrs spectrum contains information of water constituents and bot-
tom if it is optically shallow. Themethod for Rrs data processing is detailed
in Shang et al. (2011). Briefly, total reflectance (Trs, sr−1, ratio of total up-
welling radiance to downwelling irradiance) and sky reflectance (Srs, sr−1,
ratio of radiance from sky to downwelling irradiance) can be calculated
from GER1500 measurements. Rrs is then obtained by deducting the
reflected Srs from Trs and further removing of residual surface contribution
(δ) through iterative derivations following Lee et al. (2010).

Water samples were also collected for fluorometric measurements
of chlorophyll a concentration (Chl, mg/m3) which were performed ac-
cording to the Ocean Optics Protocol Version 2.0 (Mueller et al., 2002).

During the survey, the sky was clear and the sea state was calm. The
water color of blooming waters was very different from that of non-
bloom or “normal” water, as indicated in Fig. 1. Part of the water even
turned reddish with visible phaeocystic gel matrix, for example, at Sta-
tion Q7 (Fig. 1b). In situ Chl ranged from 7.3 to 45.6 mg/m3, with higher
concentration observed on September 12, 2015.

2.2. UAV surveys

In order to obtain a quantitative assessment of an HAB event using
UAVs, i.e., to provide an estimation of the bloom scale represented by
concentrations of phytoplankton pigments (e.g., chlorophyll a), the
first step is to develop a method to obtain sound Rrs from radiometric
measurements with the UAV platform. Note that unlike either ship-
based measurement strategies (e.g., Carder and Steward, 1985; Lee et
al., 2013) or satellite-based measurement strategies (e.g., Gordon et
al., 1982), measurements via UAVs and associated data processing en-
countered different challenges, and no methods have yet reported in
obtaining Rrs spectra from UAV measurements. To develop and test
such a method, in situ measurements of Rrs with UAV overflights were
carried out in Zhangjiang River estuary and Gulei Peninsula during
2014–2015 (see blue symbols in Fig. 1a for the location, and UAV flight
tracks in Fig. 1c & d). During the surveys, the skywasmostly overcast or
cloudy (see Table 1). A scheme to derive Rrs from UAVmeasurements is
proposed and detailed below in Section 3.

3. Approach to derive Rrs from UAVmeasurements

3.1. Instrument and measurements

The UAV used in this study is an LT-150 (TOPRS Technology Co., Ltd.,
China) equipped with an AvaSpec-dual spectroradiometer (Avantes,
Netherlands),which includes two sensors (see Fig. 2a) covering a spectral
range of 360–1000 nmwith a spectral resolution of 1 nm and a signal-to-
noise ratio of ~100–400 in the visible domain. This spectroradiometer
was factory calibrated. Two properties were measured with the two sen-
sors: (1) total upwelling radiance (Lt(h, λ,t),Wm−2 nm−1 sr−1), and (2)
downwelling irradiance (Ed(h, λ,t), Wm−2 nm−1), with h the altitude of



Fig. 1. (a) The Taiwan Strait; (b) theWeitou Bay, with its location shown as a red star in Fig. 1a; blue symbols show in situ sampling stations on September 11, 2015; survey on September
12, 2015 included in situ sampling (red symbols) and UAV flights (light dotted line); pictures were taken at Station Q7, also at two other contrasting sites (bloom water indicated by a
yellow symbol and non-bloom water indicated by a green symbol); the dotted line extending from the outlet of Anhai Bay to Dabaiyu and then to Weitou Village shows a rough
boundary of bloom area as reported by Fujian Marine Forecast; (c) in situ surveys (circles) with UAV overflights (light dotted line) in Zhangjiang River estuary, with its location shown
as a blue symbol in Fig. 1a; (d) in situ surveys with UAV overflights in Gulei Peninsula, with its location shown as a blue symbol in Fig. 1a.
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the UAV and t the timewhen themeasurements were taken. The current
UAV-radiometer setup provides one line of data along the flight track,
with a flying altitude of 300 m, which results in a surface pixel size of
5.2 m in diameter. The flying speed was 30 m/s, with a sampling rate of
1 Hz, which resulted in a ground resolution of 30 m (Fig. 2b). All UAV
flights were carried out within the time frame of 9:00–16:30.

3.2. Derive Rrs from UAV

Because the sea surface is commonly roughened by waves, Lt(h, λ,t)
in general can be expressed as Lee et al. (2010):

Lt h;λ; tð Þ ¼ Lpath λ; tð Þ þ∑W ið Þ � F ið Þ � Lsky λ; t; ið Þ þ T � Lw λ; tð Þ ð1Þ
Table 1
Statistics for comparison between Rrs fromUAV andmatching up Rrs fromGER at each sta-
tion (400–750 nm).

Station
number

Sea
statea

Solar zenith
angle [°]

Sky
condition

Windb speed
(m/s)

RMSD ε
(%)

r

S1 1 33 Cloudy 1 0.0030 44 0.99
S2 1 29 Cloudy 1 0.0011 13 0.99
S3 1 25 Cloudy 1 0.0035 33 0.99
S4 2 22 Cloudy 1 0.0032 31 0.97
S5 3 19 Overcast 1 0.0031 26 0.96
S6 1 49 Overcast 1 0.0061 41 1.00
S7 2 52 Overcast 1 0.0081 57 0.99
S8 3 56 Overcast 1 0.0028 20 1.00
S9 1 49 Overcast 3 0.0024 14 0.99
S10 2 57 Clear 2 0.0027 14 1.00
Q13 1 52 Clear 5 0.0029 26 0.98
Q16 2 58 Clear 5 0.0017 11 0.97
Q17 2 59 Clear 5 0.0019 14 0.95
Q18 2 63 Clear 5 0.0029 22 0.95

a According to the standard released by the National Marine Forecast of China.
b The wind speed data is from https://rp5.ru/.
Here Lpath(λ,t) is the path radiance resulted from atmospheric scat-
tering by the layer of atmosphere between the surface and the sensor
at the UAV;W(i) × F(i) × Lsky(λ,t, i) is the surface-reflected sky radiance
with F the Fresnel reflectance corresponding to the observation of Lt and
W(i) for the weighting factor corresponding to Lsky(λ,t, i) (Lee et al.,
2010), while Lsky(λ,t, i) is the downwelling sky radiance for facet i. T is
the diffuse transmittance of the atmosphere and Lw(λ,t) is the water
leaving radiance. Note that unlike notations in many other publications
Fig. 2. (a) The LT-150 UAV equippedwith the AvaSpec-dual sensor system (Ed to measure
downwelling irradiance and Lt to measure upwelling radiance); (b) ground resolution
along flight line.

https://rp5.ru/


Fig. 3.An example of Ed(h, 555, t) before and after wavelet transform; red: discarded data;
blue: valid data after wavelet transform.
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for ocean color remote sensing, here Lpath does not include the surface
Fresnel reflected light because the latter is included explicitly in Eq.
(1). Also, the effects of any likely white caps due to brokenwaves are in-
cluded in the surface reflectance term.

In practice, because the flight altitude is just about 300 m, Lpath(λ,t)
can be considered as negligible, and T is approximated as 1.0. Then Eq.
(1) can be approximated to (Lee et al., 2010):

Lt h;λ; tð Þ ¼ F � Lsky λ; tð Þ þ Lw λ; tð Þ þ δ tð Þ � Ed 0þ;λ; tð Þ ð2Þ

where δ(t) is residual reflectance of the sea surface (due to white caps,
etc.) in units of sr−1, F is averaged F for all facets, and Lskyðλ; tÞ is aver-
aged W(i) × Lsky(λ,t, i) for all facets. Considering that h is just 300 m, it
is reasonable to approximate Ed(h,λ,t) as the downwelling irradiance
just above the water surface Ed(0+,λ,t). Then dividing both sides of
Eq. (2) by Ed(0+,λ,t) results in:

Trs h;λ; tð Þ ¼ F � Srs λ; tð Þ þ Rrs λ; tð Þ þ δ tð Þ ð3Þ

where Trs is total reflectance and Srs is sky reflectance. Because the radi-
ance sensor looks down at nadir, F can be approximated to 0.023
(Mobley, 1994). Rrs is then derived as:

Rrs λ; tð Þ ¼ Trs h;λ; tð Þ−0:023� Srs λ; tð Þ−δ tð Þ ð4Þ

Then the key to derive Rrs from Eq. (4) is to estimate Srs and δ, as de-
tailed below.

3.2.1. Quality control on UAV raw data
Before Rrs can be derived from Eq. (4), quality control on raw data is

imperative. This is because themeasured Ed(h, λ, t) and Lt(h, λ, t) vary sig-
nificantly due to tilts of the UAV platform as well as moving clouds. Here
we used wavelet transform (Ebadi and Shafri, 2015) to filter out outliers
in themeasurements of Ed(h, λ, t) and its corresponding Lt(h, λ, t). Briefly,

(1) Use Ed(h, λ, t) at 555 nm (Ed(h, 555, t)) to determine measure-
ments under stableUAV conditions. Specifically, implementwave-
let transform for Ed(h, 555, t) to get smoothed Ed(h, 555, t)
(hereafter s_Ed(h, 555, t)); calculate relative difference between
s_Ed(h, 555, t) and Ed(h, 555, t) for each flight line; retain those
Ed(h, 555, t) that are within ±10% of s_Ed(h, 555, t), and retain
those Ed(h, λ, t) and Lt(h, λ,t) corresponding to the selected Ed(h,
555, t). An example for such a processing, which was acquired
under clear sky, is shown in Fig. 3, where only valid data (blue
dots) after this quality control were used for further processing.
Because of tilting of the UAV, there are clearly variations (within
±10% on average) of the resulted downwelling irradiance,
which could contribute ±10% variation on the magnitude of re-
mote sensing reflectance.

(2) Based on a visual examination and statistics, we found that data
over land was featured by negative values for Trs(550)–1.5
Trs(850). Thus we implemented an automatic procedure by calcu-
lating this value and discarding allmeasurements of Ed and Lt asso-
ciated with a negative Trs(550)–1.5 Trs(850).

After removing outliers in Ed(h, λ, t) and Lt(h, λ, t) as shown
above, Lt(h, λ, t) with potential serious sun glint were further exam-
ined following Kutser et al. (2009), via employing the O2 absorption
band at 760 nm. Specifically, the following was calculated for each Lt
spectrum

G tð Þ ¼ Lt h;755; tð Þ þ Lt h;775; tð Þð Þ=2−Lt h;760; tð Þ ð5Þ

If the difference between an individual G(t) and the averaged G dur-
ing a flight line is two times greater than the standard deviation of G
within that flight line, the Lt(h, λ, t) associated with this G(t) as well as
its corresponding Ed(h, λ, t) were discarded; otherwise the Lt(h, λ, t)
data for this line were retained as valid data and used subsequently
for the derivation of Rrs. It is noteworthy that no serious sun glint was
detected in all our UAV dataset after the two-step quality control for re-
moving outliers (i.e., implementingwavelet transform and then remov-
ing land data).

3.2.2. Removing Srs and residual reflectance δ
After Lt and Ed were determined, Trs was calculated as a simple ratio

of Lt to Ed. It then requires to removeSrs and residual reflectance δ before
Rrs can be derived from Eq. (4).

However, therewas no sensor on theUAV tomeasure Lsky during the
UAVflights. Herewe simply implemented thebio-opticalmodel and the
iterative approach of Lee et al. (2010) to estimate and remove Srs and δ,
with Srs(500) included as an extra variable in the optimization proce-
dure, and taking usage of the spectral dependence of Srs(λ) as shown
below.

FollowingToole et al. (2000) andGould et al. (2001), the spectral de-
pendence of Srs(λ) can be expressed as:

Srs λð Þ ¼ Srs 500ð Þ � e−k λ−500ð Þ ð6Þ

An in situ dataset (n= 60) measured by our group using a GER1500
fits Eq. (6)well (Fig. 4a), and it was also found from this dataset that the
slope k was significantly correlated with Srs(500) (see Fig. 4b), with

k ¼ 0:0079� e−8:488�Srs 500ð Þ ð7Þ

Note that lower Srs(500) corresponds to higher k, meaning that the
sky reflectance is more blue-rich.

4. Results

4.1. Rrs from UAV compared to Rrs from GER

Based on the above processes, Rrs(λ, t) can be derived from Lt(h, λ, t)
and Ed(h, λ,t) measured onboard the UAV (represented as Rrs(λ, t)_u or
Rrs_u). To evaluate the quality of Rrs(λ, t)_u, a comparison between
Rrs(λ, t)_u and concurrent ship-borne (i.e., field measured) Rrs (repre-
sented as Rrs_f) using a GER1500 was carried out. When matching up
Rrs(λ, t)_uwith the Rrs_f, to ensure a larger number ofmatch-ups for sta-
tistical analysis, we usedmeasurements co-located towithin 500mspa-
tially and within 30 min temporally. A total of 10 match-ups were
compiled (see symbols in Fig. 1c & d for the location of these 10 sta-
tions). In addition, following community-accepted practices (e.g.,
Hooker et al., 2002; Lee and Hu, 2006; Mélin et al., 2007; Moore et al.,
2009), the root mean square difference (RMSD) and averaged unbiased
absolute percentage difference (ε), as well as the correlation coefficient



Fig. 4. (a) Spectral dependence of Srs(λ) at a range of 400 nm to 750 nm; dashed line: Srs(λ) calculated based on Eqs. (6)–(7), using Srs(500) of ~0.1 sr−1, 0.2 sr−1 and 0.3 sr−1; solid curve:
measured Srs(λ); (b) Srs(500) vs k, where k is the spectral slope of sky reflectance defined in Eq. (7).
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(r) in linear regression analysis, were used to measure the consistency
between field measured (f) and UAV determined (u) datasets:

ε ¼ 1
n
∑
n

i¼1

ui−f ij j
ui þ f i

� �
� 200% ð8Þ

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1
uið Þ− f ið Þ½ �2

s
ð9Þ

Here n is the total number of data points.
The comparison of the 10 match-ups suggests that these two mea-

surements are highly consistent with each other. As an example, Fig.
5a shows Rrs spectrum (400–750 nm) of two stations, where consistent
spectrum of Rrs_u and Rrs_f are observed. A novel quality assurance (QA)
system (Wei et al., 2016) was also used to evaluate the quality of Rrs_u
for the 10 stations (Fig. 5b). In 8 out of 10 stations, Rrs_u had scores
N0.8, demonstrating high quality of these Rrs_u. Statistics for the com-
parison between these 10 Rrs_u and Rrs_f match-ups are also summa-
rized in Table 2.

Statistically the unbiased absolute percentage difference (ε) is in a
range of ~22–41% (with a mean value as ~27%) at the six MODIS
Fig. 5. (a) Rrs_u compared to concurrent Rrs_f; data of two stations (S2, solid; S8, dashed) are sho
system (Wei et al., 2016).
ocean-color bands (412–667 nm), with RMSD ranging ~0.0032–
0.0048 sr−1. These differences, however, could be a result of factors
and components associated with the determination of both Rrs_u and
Rrs_f. For instance, the values of both Rrs_f and Rrs_u depend on the cal-
ibration of sensors used in the measurements. The higher ε (then lower
RMSD) value is at 412 nm, where Rrs(412) is very low, is likely due to
strong contribution of CDOM for such estuary water body. These statis-
tics measures are actually similar to the evaluation results when com-
paring satellite products with in situ measurements for coastal turbid
waters (Zibordi et al., 2009). These values, however, are slightly higher
than those found between MODIS and in situ measurements for the
western Taiwan Strait (Dong, 2010), and between MODIS and in situ
measurements for the northeastern South China Sea and the Taiwan
Strait (a combination of both oligotrophic waters and turbid nearshore
waters, Shang et al. (2014b)). This slightly higher uncertainty in Rrs eval-
uation than that in previous studies is a result of 1) smaller number (just
10 stations here) of match-up analysis, and 2) these stations are located
in more turbid waters of the western Taiwan Strait (Zhangjiang River
estuary and Gulei Peninsula, see Fig. 1c & d). Therefore, considering
the turbid and patchy nature of the water environment and the difficul-
ty in UAV data processing, these uncertainties are considered as reason-
able. Nevertheless, these differences in Rrs magnitude, which are
wn as examples; (b) scores of the Rrs_u of Stations S1–S10 evaluated by a quality assurance



Table 2
Statistics for comparison between Rrs fromUAV andmatching upRrs fromGER at six bands
of MODIS.

MODIS bands (nm)a 412 443 488 531 547 667

RMSD 0.0032 0.0038 0.0045 0.0048 0.0048 0.0038
ε (%) 41 36 30 24 22 22
r 0.49 0.66 0.72 0.62 0.60 0.82

MODIS bands (nm)b 412 443 488 531 547 667
RMSD 0.0028 0.0033 0.0040 0.0042 0.0043 0.0035
ε (%) 32 32 27 21 20 22
r 0.50 0.65 0.69 0.60 0.54 0.78

a These MODIS statistics only included the 10 match-ups (Stations S1–S10).
b These MODIS statistics included Weitou Bay match-ups (14 in total).
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actually not significant, will have more impact on the retrieval of the
backscattering coefficient rather than the absorption coefficient, as it
is the former that depends more on the magnitude of Rrs.

4.2. The bloom in Weitou Bay observed with the UAV

With confidence in the derived Rrs from our UAVmeasurements, we
take advantage of the UAV system to sense the Phaeocystis bloom in
Weitou Bay as described in Section 2.1. The UAV flew over the eastern
Weitou Bay during 15:56–16:29 on September 12, 2015, while in situ
measurementswere carried out simultaneously. Likely due to the stron-
ger wind condition on this day (see Table 1), apparently the UAV was
tilted which resulted in a ~30% under-measurements in Ed when com-
pared to that estimated by RADTRAN (Gregg and Carder, 1990). We
therefore scaled the UAV-measured Ed(h, λ,t) during this overflight by
1.3 in the process of calculating Rrs_u.

Therewere four in situ stations, StationsQ13, Q16, Q17 andQ18, that
were within 500m and 30min of the UAV overflight (see Fig. 1b for the
location). Again, Rrs_u derived from the UAV measurements are quite
consistent with Rrs_f for these four Stations (see Fig. 6a). The ε values
are in a range of ~11–26% (with a mean value as ~18%), with RMSD
values in a range of 0.0017–0.0029 sr−1 and excellent correlations (r N
0.95) (see Table 1). These comparisons further confirm that our data
collection and processing system with an UAV platform is valid.

Fig. 6b presents all the derived Rrs_u for UAV overflights on Septem-
ber 12, 2015, while examples of Rrs_uwith distinct strong peaks around
700 nm (red curves) and peaks around 683 nm (black curves) are
highlighted in Fig. 6c. The peak around 700nm is a clear indicator ofwa-
ters with intense phytoplankton bloom as often observed from in situ
measurements (e.g., Dierssen et al., 2006; Gitelson, 1992). In addition,
74% of all the derived Rrs_u show QA scores (Wei et al., 2016) N0.8,
which further indicates satisfied quality of these Rrs_u spectra (Fig. 6d).

Rrs_u datawere then used for Chl estimation using an empirical algo-
rithm (shown below) developed for phytoplankton bloom waters
alongshore thewestern Taiwan Strait based on awavelength-shift algo-
rithm (Gitelson, 1992) and a fluorescence line height (FLH) algorithm
(Letelier and Abbott, 1996).

When the wavelength of maximum Rrs in the range of 677 nm to
715 nm (λmax) is N692 nm, we have

Chl ¼ 6:65� λmax−4569:10 ð10Þ

Otherwise FLH is calculated, which is further converted to Chl:

FLH ¼ Rrs 681ð Þ−Rrs 665ð Þ−0:2� Rrs 745ð Þ−Rrs 665ð Þ½ � ð11Þ

Chl ¼ 9498:90� FLH−0:42 ð12Þ

The coefficients of these empirical algorithmswere tuned based on a
separate hyperspectral dataset of our group collected in the western
Taiwan Strait (unpublished data; see Appendix).
The resulted Chl products are shown in Fig. 7. Higher Chl values in
the northeastern Weitou Bay were found, which was also found in the
limited in situ measurements on the same day (i.e., September 12,
2015, also see circles overlaid in Fig. 7). Specifically, the estimated Chl
from the UAV measurements at Stations Q13, Q16, Q17 and Q18 was
13.8 mg/m3, 16.6 mg/m3, 17.3 mg/m3 and 16.6 mg/m3 respectively,
while the corresponding in situ values were 15.4 mg/m3, 14.8 mg/m3,
14.4 and 16.6 mg/m3. Based on these four limitedmatch-ups, the differ-
ence between UAV estimates and the in situ measurements was b20%.
This deviation between UAV sensed Chl and in situ Chl is much lower
than in the Taiwan Strait between MODIS Chl and its in situ match-
ups, of which the average percentage error is 136% (Shang et al.,
2011). Note thatWeitou Bay is one of the inner bays in thewestern Tai-
wan Strait (see Fig. 1 for its location).

Normally in Weitou Bay in early fall, Chl is b2.0 mg/m3 (personal
communication with Mr. Dewen Chen at SOA Marine Forecast of Xia-
men). The estimated Chl from the UAV measurements ranged 6–
98mg/m3, suggesting a 3–50 fold increase in the chlorophyll concentra-
tion due to this phytoplankton bloom. Furthermore, the bloom covered
almost the entire UAV tracks, with the most intense bloom close to the
northeastern shore of Weitou Bay (the circled zone in Fig. 7).

5. Discussion

5.1. UAV data reduction

One of the major challenges in airborne remote sensing of coastal
water environments is to obtain accurate Rrs from at-sensor calibrated
radiance. This is because: (1) most available atmospheric correction to
remove path radiance has been designed for satellite use where look-
up tables (LUTs) were constructed at the top-of-atmosphere (TOA)
level while airborne flights are often at much lower altitude (300 m in
this study); (2) most commercially available atmospheric correction
modules (e.g., ENVI FLAASH) are designed for land use, where the Fres-
nel reflectance of the water surface is regarded as part of the to-be-re-
trieved surface reflectance instead of part of path radiance (Hu and
Carder, 2002), leading to errors in the retrieved Rrs.

Most atmospheric correction of airborne hyperspectral measure-
ments require tedious pre-processing to establish sensor-specific LUTs
suitable for the sensor altitude (Gao et al., 2007; Zhang et al., 2015) or
image-specific manual processing to take advantage of cloud shadows
(Lee et al., 2007). In this study, due to the low-altitude (300 m) flights,
neither is available or necessary. Rather, a practical approach, similar to
the approach for data reduction of ship-based measurements but with
consideration of sky color and residual errors in Fresnel reflection re-
moval, has been developed and proven effective in deriving Rrs. Al-
though the approach has not been tested elsewhere, we believe that
the principles and the general assumptions should hold for other low-
altitude cases, especially when considering that all data used in this
study was collected in turbid bays and estuaries, and 9 out of 10
match-ups of UAV and in situ measurements were obtained in cloudy/
overcast weather (see Table 1). On the other hand, for higher-altitude
flights (e.g., N1 km), the same approach may lead to larger errors be-
cause the path radiance term in Eq. (4) can no longer be neglected.
Under those circumstances, more sophisticated approaches are re-
quired for effective atmospheric correction.

5.2. UAVs for coastal water monitoring

Estuaries and bays are placeswhereHABs often occur. For their small
sizes and proximity to land, the use of UAVs is a good option tomeet ur-
gent needs of event response. In this study, it took a UAV team roughly
30 min to get the system ready for the flight. In addition, compared to
manned aircrafts that often fly over 1-km altitude (e.g., Zhang et al.,
2015), the low-altitude (several hundred meters) flight of UAVs not
only obtains a zoom-in observation of the events, but also makes it



Fig. 6. (a) Rrs_u compared to concurrent Rrs_f measured inWeitou Bay (4 match-ups available); (b) all Rrs_u collected overWeitou Bay (n= 697); (c) examples of Rrs_u showing strong
peaks around 700 nm (red curves) compared to Rrs_u with peaks around 683 nm (black curves); (d) frequency distribution of scores of all Rrs_u evaluated by a quality assurance system
(Wei et al., 2016).
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easier for data reduction as less atmosphere is between the sensor and
the target, leading to possibly higher quality of Rrs spectra and quicker
data turn-around for event response.

Similar to sensorsmounted onmanned aircrafts, hyperspectralmea-
surements from UAVs have higher spatial and spectral resolutions than
most satellite measurements, where the latter are often inadequate to
assess blooms or other features in nearshore waters. For example, the
distribution and magnitude of the bloom in Weitou Bay cannot be re-
vealed by MODIS images at either 1-km or 500-m resolution or by
Landsat 8 image at 30-m resolution. This is demonstrated in Fig. 8,
where Fig. 8a shows a MODIS Chl image (1-km resolution) on Septem-
ber 12, 2015 after relaxing several flags (HILT and CLOUD) to enable
sufficient data coverage; and Fig. 8b shows a MODIS color index (CI)
image (500-m resolution) on the same day processed following Hu
(2011). Fig. 8c shows a Landsat 8 true color image (30-m resolution)
on September 11, 2015. While MODIS Chl image revealed relatively
high Chl in nearshore waters in the northeasternWeitou Bay, it lacks res-
olution to show detailed spatial features. The same problem was found
for the MODIS CI image even though its spatial resolution is higher. The
Landsat 8 image (Fig. 8c) provides more detailed spatial features but no
clear pattern of the bloom (the bloom covered the area east to the red
line in Fig. 8c, as reported by the Fujian Marine Forecast). This is likely
due to thewide and limited spectral bands of Landsat sensors that dimin-
ish the important spectral signatures of phytoplankton (see Fig. 8d).



Fig. 7. Chl estimated from the UAV measurements on September 12, 2015, with black
circles representing measurements from water sample analysis. The UAV measurements
took place between 15:56 and 16:29.

Fig. 8. MODIS Chl (a) and color index; (b) images on September 12, 2015 over Weitou Ba
measurements; (c) Landsat 8 true color image on September 11, 2015 over Weitou Bay, wit
processed using ACOLITE with SWIR atmospheric correction (Vanhellemont and Ruddick, 2015
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Clearly, for small and patchy targets such as phytoplankton blooms
in nearshore waters, UAVs equipped with hyperspectral sensors are vi-
able systems to quickly capture fine spatial details in responding to such
dynamic events. However, as always a high-spatial resolution system
will lack a spatial coverage. This shortcoming could be addressed with
multiple UAVs and/or extended overflights. Further, unlike satellite
measurements where data processing is more or less standardized,
hyperspectral UAV flights and associated data processing are still at its
infancy. It will take dedicated efforts before unified protocols are
established. Nevertheless, given the easiness and low cost to operate a
UAV, we expect to see more measurements and data processing
schemes in the near future to advance the UAV platform for aquatic re-
mote sensing.

Coastal environments are highly dynamic due to tidal influence,
wind stressing, or physical/biological aggregation, therefore often re-
quiring more frequent measurements than that provided by typical
polar-orbiting satellites (Lou and Hu, 2014). Without a geostationary
satellite, UAVs may provide repeated high spatial resolution measure-
ments of the same locations to examine the bloom dynamics; this is in
addition to assessing the bloom magnitude and extent. While manned
airborne measurements have been demonstrated to be capable of
studying short-term changes in coastal environments (e.g., Zhang et
al., 2016), the use of UAVs, which are more flexible for low-altitude
y and its adjacent waters, overlaid with the locations of UAV (blue) and in situ (red)
h the red line indicating boundary of the Phaeocystis bloom; (d) Landsat 8 Rrs (grey bar,
)) compared to Rrs from UAV (solid line) and GER (dashed line) at Station Q16.
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repeated deployments, is at its infancy for the same purpose, thus re-
quiring more research.

6. Conclusions

Although data is limited, this case study proved for the first time that
it is possible to derive sound Rrs spectra from radiometric measure-
ments taken on aUAV. This is also thefirst time thatfine-resolution spa-
tial distribution and magnitude of a phytoplankton bloom were
obtained from the same UAV measurement in a small region. Such
fine-resolution measurements with rapid response to HAB events are
difficult with conventional ocean color satellites or manned aircrafts.
These results support the deployment of such systems in a routineman-
ner during bloom seasons, where the timely information on bloom
magnitude, extent and evolution may aid the study of bloom mecha-
nism and management decisions through providing key observations.
However, the UAV system and the data processing protocols are far
from mature, more efforts are necessary to improve the measurement
system and refine the processing schemes in order to take a full advan-
tage of such flexible and agile systems for routinemonitoring of aquatic
environments.
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